

1001 ways of leveraging
gossipilig
Consistency Bimodal Multicast [Birman&al, / Management [Kermarrec&al, IEEETPt [Demers & al, PODC] Lobcast [Equer&al DSNO], A
Pagregation
[Jelasity&al, ACM TOCS 05] Slicing
Astolabe [Birman & al, 2003] [Jelasity, Kermarrec, P2P06] Overlay maintenance
Secure Sampling Cyclon[Voulgaris& al, 2005]
Publish
Sub-2-Sub [Voula
Clustering BAR Gossip [Li & al, OSDI06]

Agenda

- 1. Overlay maintenance: Unstructured networks Random Peer Sampling

- Loose structuring: clustering Biased Peer Sampling
 Enabling efficient routing Kleinberg-like Peer Sampling Gossip-based structured networks: for which applications?
 Distributed Slicing
 Content-based pub-sub systems (Sub-2-sub)
 Range queries in multidimentional spaces (Voronet/Raynet)

Proportion of infected processes

Large system of size n

Probabibility that the epidemic catches $(1-p_{ext})$ Proportion of processes eventually contaminated $\pi = 1 - e^{-\pi f}$ where *f* is the fanout

Independent of n, a fixed average of descendants will lead to the same proportion of infected processes

RINRIA

Probability of atomic infection

Erdos/Renyi examine final system state, the system is represented as a graph where each node is a process, there is an edge from n_1 to n_2 if n_1 is infected and chooses n_2 .

An epidemic starting at n_0 is successful if there is a path from n_0 to all members. If the fanout is $\log(n) + c$, the probability that a random graph is connected is

$$p(connect) = e^{-e^{-c}}$$

- Creates unstructured overlay network topologies
- Interface
 - Init(): service initialization
 - GetPeer(): returns a peer address, ideally drawn uniformly at random

Properties

- View: local knowledge of the system Continuously updated to reflect the dynamics of the system
 - · Provides a sample of the network
- Generic framework [GJKvSV, ACM TOCS 2007] Covers existing gossip-based membership protocols: Lpbcast [EGKK01], Newscast[JKvS03], Cyclon[VDvS03]

 - Explore the design space
 Evaluation of the "randomness" of the sampling
 Interestingly enough: generic enough for many other protocols

RINRIA

Protocol Active thread

Active thread Wait (T time units) P <- selectPeer() if push then myDescriptor <- (my@,0) buffer <- merge (view, (myDescriptor)) send buffer to p else send{} top //riggers response if pull then receive view from p buffer <- merge(view_p, view) view <- selectView(buffer) view_p<-increaseage(view_p)

Passive Thread

(p,view_p) <- waitMessage() if pull then myDescriptor <-(my@,0) buffer <-merge(view, {myDescriptor}) send buffer to p

View_p <-increaseage(view_p

buffer <- merge(view_p, view) View <-selectView(buffer)

Average path length

Results

- all protocols result in a very low path length.
- large S values are the closest to the random graph.

RINRIA

RINRIA

Clustering coefficient

Results

- clustering coefficient also converges
- controlled mainly by H.
- Large value of H result in significant clustering, where the deviation from the random graph is large.
- large part of the views of any two communicating nodes overlap right after communication (freshest entries).
- Large values of S, clustering is close to random

Gossip-based topology management

- Line: d(a,b) = |a-b|
- Ring: interval[0,N], d(a,b)=min(N-|a-b|,|a-b|)
- Mesh and torus: d=Manhattan distance
- Sorting problems: any other application dependent metric

Clustering similar peers

- Vicinity: Introducing application-dependent proximity metric [VvS, EuroPar 2005]
- Two-layered approach
 Biased gossip reflecting some application semantic
 - 2. Unbiased peer sampling service

Gossip-based small-world networks

- · Leverage theory
- · Decentralized selection of neighbours Clustering protocol: local neighbours Peer sampling: shortcuts
- Shortcut selection: peer sampling service Random selection: random peer sampling Kleinberg selection: tune the view so that it matches the Kleinberg's distribution
- · What are we interested in?
- · Impact on the routing efficiency
- · Impact on the graph properties

Imple	ementation	
	Peer A B C D E F	
В	B+C B+C+D B+C+D+E B+C+D+E+F	
0	Prob to keep as a Kleinberg shortcut Data exchange: [E,F]	→ 1
	Peer B G H I J A	
G	G+H G+H+I G+H+I+J G+H+I+J+A	
••• 0	Prob to keep as a Kleinberg shortcut Data exchange: [I,J]	→ 1
April 2009		73

Ordered slicing: optimizations & issues Further optimization: Local measure of the disorder [Fernandez & al, ICDCS 2007] Issues Uniformity requirement

Sub-2-Sub summary

- Showed that a dedicated P2P present soundness for complex applications such as content/based .

.

- Sub-2-Sub
 Accurate → All and only interested nodes receive event
 Autonomous → No need for extra device
 - Collaborative
 - Self-organized

 - Very scalable (nodes and attributes) Experiments for 10 attributes present the same results
- Current work
 - Limiting the number if neighbours by articially manipulating the size of subscriptions

RINRIA

References

- [Fernandez & al] Distributed Slicing in Dynamic Systems, Antonio Fernández, Vincent Gramoli, Ernesto Jiménez, Anne-Marie Kermarree, Michel Raynal, Proceedings of the 27th International Conference on Distributed Computing Systems (ICDCSO7) juri 2007 (Jelasity & al. 2003) Newscast Computing Molasity, W. Kowalczyk, M. van Steen. Internal resolution IR-CS-0003 (Newscast Computing Molasity), W. Kowalczyk, M. van Submitted for publication.
- ⁴⁴ Tegori IR-CS-506, Vrije Universitelit, "Dipartment of Computer Science, November 2003." Submitted for publication of Unstructured for publication of Unstructured (Jabasity & al., 2004). The Peer Sampling Service: Experimental Evaluation of Unstructured Steen. Proc. Sin ACM/HCIVISENIX International Middleware Conference, Toronto, Canada, Oct. 2004. [Jabasity & al., 2005] Gossip-based aggregation in large dynamic networks M. Jelasity, A. August 2005. Babaoglu. ACM Transactions on Computer Systems, 23(3): 219–252, August 2005. [Oscip-based aggregation in large dynamic networks M. Jelasity, A. August 2005. [Oscip-based aggregation in large dynamic networks M. Jelasity, A. Montresor, and O. Babaoglu. ACM Transactions on Computer Systems, 23(3): 219–252, August 2005. [Oscip-Ocaec 2006] Ordered Stilling of Very Large-Scale Overlay Networks. M. Jelasity, and A. Kermarrec. In The Sixth IEEE Conference on Peer to Peer Computing (P2P). Combridge, UK, 2006. [Selected Paper], 2006.] Cossip-based overlay topology management. M. Jelasity and O. (ESOA 2005). [Bersiend Steelerd Paper", volume 3910 of Lecture Netes in Computer Science, pages 1–15. Springer-Verlag, 2006.

