
1

April 2009 1

Gossip-based networking

Anne-Marie Kermarrec
ASAP (As Scalable As Possible) Research Group

INRIA Rennes, France

April 2009
2

Gossip (Wikipedia)

• Gossip consists of casual or idle talk of any
sort, sometimes (but not always) slanderous
and/or devoted to discussing others.

 While gossip forms one of the oldest and
(still) the most common means of spreading
and sharing facts and views, it also has a
reputation for the introduction of errors and
other variations into the information thus
transmitted…

Reliable way of spreading
 information

April 2009
3

Epidemic (Wikipedia)

• In epidemiology, an epidemic is a disease
that appears as new cases in a given human
population, during a given period, at a rate
that substantially exceeds what is “expected”.

• Non-biological usage:
 The term is often used in a non-biological sense to

refer to widespread and growing societal problems
Efficient way of spreading

 something

2

April 2009
4

Gossip/epidemic in distributed
computing

Replace people by computers (nodes or
peers), words with data

We retain from

• Gossip: peerwise exchange of information

• Epidemic: wide and exponential spread

 Refer to gossip in the reminder of the talk

April 2009
5

The gossip revival

• Dramatic shift in scale (size, data,
spread)

• Dynamic nature (mobility, versatility, …)
leads to near continuous changes

 Lead to a fair amount of uncertainty

Gossip-based networking

• Peer to peer communication paradigm

• Probabilistic nature

• Eventual convergence

April 2009
6

Gossip-based protocols

• Some form of randomization
• Periodic exchange of information
• Bounded messages
• Strengths

• Simplicity
• Emergent structure
• Convergence
• Robustness

• Weaknesses
• Overhead
• Hard to cope with malicious behavior

3

April 2009
7

1001 ways of leveraging
gossiping

Consistency
Management

[Demers &al, PODC 87]

Epidemic dissemination
Bimodal Multicast [Birman&al, ACM TOCS 99]

[Kermarrec&al, IEEETPDS 03]
Lpbcast [Eugster&al DSN01, ACM TOCS 03]

JetStream[Patel & al, NCA 2006]
Aggregation

[Jelasity&al, ACM TOCS 05]
Astolabe [Birman & al, 2003] Overlay maintenance

Lpbcast [Eugster & al,ACM TOCS 03
Cyclon[Voulgaris& al, 2005]

Newscats[Jelasity & al, 2003]

Slicing
[Jelasity, Kermarrec, P2P06]
[Fernandez & al, ICDCS07]

Publish-subscribe
Sub-2-Sub [Voulageris & al, IPTPS06]

Tera[Baldoni & al, DEBS07]
Clustering

Vicinity, Jstream, Tman Secure streaming
BAR Gossip [Li & al, OSDI06]

Content-based search
Vicinity[Voulgaris & Steen,Euro-Par 05]

VoroNet [Beaumont & al, IPDPS 07]
RayNet[Beaumont & al, OPODIS 07]

Secure Sampling
Brahms [Bortnikov & al, 08]

April 2009
8

Agenda

1. Overlay maintenance: Unstructured networks
 Random Peer Sampling

2. Loose structuring: clustering
 Biased Peer Sampling

3. Enabling efficient routing
 Kleinberg-like Peer Sampling

4. Gossip-based structured networks: for which
applications?

1. Distributed Slicing

2. Content-based pub-sub systems (Sub-2-sub)

3. Range queries in multidimentional spaces
(Voronet/Raynet)

April 2009 9

P2P overlay: which
structure?

4

April 2009
10

Peer to peer overlay networks

A

B

Physical links Physical nodes

Logical nodes Logical links

o
v
e
rl
a
y

IP
 n

e
tw

o
rk

April 2009
11

Peer to peer overlay networks

• Provide various functionalities/performance: search,
dissemination, etc

• Common characteristics
• Self-organizing
• Local knowledge
• Resource aggregation

• Resulting properties
• Scalability
• Resilience to churn

Routing capabilities

Flexibility

Unstructured networks Fully structured networks

April 2009
12

Example: Search in peer to peer
overlays

• Data distributed (and
potentially replicated)
between nodes

• Each node knows only
the IP @ of its
neighbours and
potentially some data
attributes

• How to find a data
without a central index?

n1

n2

n3

n5

n6

n7

n4

a

b

c

a

b a

a

a

c

d

5

April 2009
13

Impact of the structure on search

• Several ways of organizing a P2P overlay network
• Search techniques: flooding versus routing
• Expressiveness
• Completeness

• Structured P2P overlay: DHT functionality
• Support for exact search

• Unstructured gossip-based P2P overlays
• Support for keyword-based search or range queries

• Weakly structured gossip-based overlays
• Improve search efficiency upon fully unstructured overlays

April 2009 14

A generic gossip-based
substrate

April 2009
15

Gossip-based generic substrate

• Each node maintains a
set of neighbours (c
entries)

• Periodic peerwise
exchange of information

• Each process runs an
active and passive
threads

P Q

Buffer[P]

Buffer[Q]

Data exchange

Data processing

Peer selection

Parameter Space

6

April 2009
16

A generic gossip-based
substrate

Active thread (peer P)

(1) selectPeer (&Q);

(2) selectToSend(&bufs);

(3) sendTo(Q,bufs);

(4) -

(5) receiveFrom(Q,&bufr);

(6) selectToKeep(cache,bufr);

(7) processData(cache)

Passive thread (peer Q)

(1)

(2)

(3) receiveFrom(&P,&bufr);

(4) selectToSend(&bufs);

(5) sendTo(P,bufs);

(6) selectToKeep(cache,bufr);

(7) processData(cache)

April 2009
17

Dissemination

Data exchange

Data processing

Peer selection

Message

 Broadcast protocol
 (Lpbcast)

K random

April 2009
18

Overlay maintenance

Data exchange

Data processing

Peer selection

List of
neighbours

Random

Random
 merging

LpbCast

 List of
neighbours

Oldest

Age-based
merging

Cyclon

 List of
neighbours

Closest

Proximity
Based merging

T-man

7

April 2009
19

Decentralized computations

Data exchange

Data processing

Peer selection

value

Random

Aggregation
Average

Aggregation

value

Random

Aggregation

System size
estimation

 Attribute value
Random value

Random

Attribute/random
matching

Slicing

April 2009 20

Why are we interested in
building random graphs?
Illustration through dissemination

Early
adopters

Innovators

Early
majority

Late
majority

Laggards

Broadcast

Contagion

April 2009
21

Epidemic-based dissemination

• Goal:
• Broadcast reliably a msg to a large number of peers in a decentralized

way
• Proactive technique to tolerate failures

• System model
• n processes
• Each process forwards the message once to f (fanout) neighbors,

picked up uniformly at random.
• Alternatively f times to 1 neighbour.

• Metrics of the success of an epidemic process
• Proportion of infected processes

• Probability of atomic “infection”

8

April 2009
22

Proportion of infected processes

April 2009
23

Probability of atomic infection

April 2009
24

Other measures

• Latency of infection
[Bollobas, Random Graphs, Cambridge

University Press, 2001]

Logarithmic number of
rounds

• Resilience to failure
[KMG, IEEE Tpds 14(3), Probabilistic

reliable dissemination in Large-scale
systems, 2003]

9

April 2009
25

The log(n) magic

• Simple dissemination algorithm

• Probabilistic guarantees of delivery

• Each node forwards the message to f nodes chosen
uniformly at random
• If f=O(log(n)), “atomic” broadcast whp
• Result is valid if the fanout for each peer is on average

log(N) + c, whatever the degree distribution.

• Relate probability of reliable dissemination and
proportion of failure
• Set parameters

April 2009
26

Performance (100,000 peers)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

k

Proportion of connected peers in non “atomic” broadcast

Proportion of “atomic”broadcast

April 2009
27

 Failure resilience (100,000
peers)

0

10

20

30

40

50

60

70

80

90

100

0% 10% 20% 30% 40% 50%

Percentage of faulty peers

99.98 99.94

Proportion of “atomic” broadcast

Proportion of connected peers in non “atomic” broadcast

10

April 2009
28

The relevance of gossip

• Introduces implicit redundancy

• Flexible and simple protocols

• Overhead
• Small messages

• Application to maintenance, monitoring,
etc…

Differ in the choice of gossip targets and
information exchanged

April 2009
29

Gossip-based dissemination

Data exchanged

Data processing

Peer selection

Message

K random

How can we achieve
Random sampling?

Dissemination
Data = msg to
broadcast

Each process gossips
one message once

April 2009 30

Achieving random topologies
through gossiping

- Epidemic dissemination

- Distributed computations (average)

- System size estimation

11

April 2009
31

The peer sampling service

• How to create a graph upon which applying gossip-based
dissemination?... By gossiping around

• Goal:
• Create an overlay network
• Provide each peer with a random sample of the network in a

decentralized way

• Means: gossip-based protocols
• What data should be gossiped?
• To whom?
• How to process the exchanged data?

• Resulting “who knows who” graphs: overlay
• Properties (degree, clustering, diameter, etc.)
• Resilience to network dynamics
• Closeness to random graphs

April 2009
32

The peer sampling service

• Creates unstructured overlay network
topologies

• Interface
• Init(): service initialization

• GetPeer(): returns a peer address, ideally
drawn uniformly at random

April 2009
33

Properties

• View: local knowledge of the system
• Continuously updated to reflect the dynamics of the

system
• Provides a sample of the network

• Generic framework [GJKvSV, ACM TOCS 2007]
• Covers existing gossip-based membership protocols:

Lpbcast [EGKK01], Newscast[JKvS03],
Cyclon[VDvS03]

• Explore the design space
• Evaluation of the “randomness” of the sampling

• Interestingly enough: generic enough for many
other protocols

12

April 2009
34

System model

• System of n peers
• Peers join and leave (and fail) the system dynamically

and are identified uniquely (IP @)
• Epidemic interaction model:

• Peers exchange some membership information periodically to
update their own membership information

• Reflect the dynamics of the system
• Ensures connectivity

• Each peer maintains a view (membership table) of c
entries
• Network @ (IP@)
• Age (freshness of the descriptor)
• Each entry is unique
• Ordered list

• Active and passive threads on each node

April 2009
35

Protocol

Active thread

Wait (T time units)
P <- selectPeer()
if push then

 myDescriptor <- (my@,0)
 buffer <- merge (view,

{myDescriptor})
 send buffer to p

else send{} to p //triggers response
if pull then

 receive view from p
 buffer <- merge(view_p, view)

 view <- selectView(buffer)
view_p<-increaseage(view_p)

Passive Thread

(p,view_p) <- waitMessage()

if pull then
 myDescriptor <-(my@,0)
 buffer <-merge(view,
{myDescriptor})
 send buffer to p

View_p <-increaseage(view_p

buffer <- merge(view_p, view)
View <-selectView(buffer)

April 2009
36

Example: Gossip-based generic
protocol

1

7

8

9

10

3
2

4

6 5

1 2 9 5

2 6 10 3

C=3

13

April 2009
37

Example: Gossip-based generic
protocol

1

7

8

9

10

3
2

4

6 5

1 2 9 5 6 10 3

April 2009
38

Example: Gossip-based generic
protocol

1

7

8

9

10

3
2

4

6 5

 2 9 10

April 2009
39

Design space

• Periodically each peer initiates communication with
another peer

• Peer selection
• Data exchange (View propagation)

• How peers exchange their membership information?

• What do they exchange?

• Data processing (View selection): Select (c, buffer)

• c: size of the resulting view

• Buffer: information exchanged

14

April 2009
40

Design space: data exchange

• Buffer (h)

• initialized with the descriptor of the gossiper

• contains c/2 elements

• ignore h “oldest”

• Communication model

• Push:buffer sent

• Push/Pull: buffers sent both ways

• (Pull: left out, the gossiper cannot inject
information about itself, harms connectivity)

April 2009
41

Design space: peer selection

• Selection
• Rand: pick a peer uniformly at random

• Head: pick the “youngest” peer

• Tail: pick the “oldest” peer

Note that head leads to correlated views.

April 2009
42

Design space: Data processing

• Select(c,h,s,buffer)

1. Buffer appended to view

2. Keep the freshest entry for each node

3. h oldest items removed

4. s first items removed (the one sent over)

5. Random nodes removed

• Merge strategies
• Blind (h=0,s=0): select a random subset

• Healer (h=c/2): select the “freshest” entries

• Shuffler (h=0, s=c/2): minimize loss

c: size of the resulting
view
H: self-healing
parameter
S: shuffle
Buffer: information
exchanged

15

April 2009
43

Example

B

X

D

L

I

J

V

X

G

A

W

J

A D

c/2
c/2

B

X

D

V

X

G

April 2009
44

Example

B

X

D

L

I

J

A

V

X

G

1. Buffer appended to view
2. Keep the freshest entry for each

node
3. h (=1) oldest items removed
4. s (=1) first items removed (the

one sent over)
5. Random nodes removed

April 2009
45

Resulting graphs properties

• Relationship « who knows who »
• Highly dynamic
• Capture quickly changes in the overlay networks

• Experimental study= lattice, random,
growing networks

• Metrics
• Degree distribution
• Average path length
• Clustering coefficient

• Healer (h=c/2, s=0)
• Shuffler (h=0, s=c/2)

16

April 2009
46

Degree distribution

• Out degree = c (30) in 10.000 node
system

• Distribution of in-degree
• Detect hotspot and bottleneck

• Load balancing properties

• Convergence
• Self-organization ability irrespective of

the initial topology

April 2009
47

Degree distribution

 0

 2

 4

 6

 8

 0 20 40 60 80 100 12

pr
op

or
tio

n
of

 n
od

es
 (

%

in-degree

,
tail,

random
Shuffler

Healer

April 2009
48

Degree distribution

• Convergence, even in growing scenario
• View selection parameter matters
• Shuffler and healer result in lower standard deviation

for opposite reasons
• Shuffler

• Controlled degree distribution
• New links to a node are created only when the node

itself injects its own fresh node descriptor during
communication.

• Healer
• Short life time of links
• When a node injects a new descriptor about itself, this

descriptor is copied to other nodes for a few cycles.
• Later all copies are removed because they are pushed

out by new links injected in the meantime

17

April 2009
49

Average path length

• Shortest path length between a and b
• minimal number of edges required to

traverse in the graph to reach b from a

• Defines a lower bound on the time
and costs of reaching a peer.

• Small average path length essential
for scalability

April 2009
50

Average path length

• Results
• all protocols result in a very low path

length.

• large S values are the closest to the
random graph.

April 2009
51

Clustering coefficient

• Results
• clustering coefficient also converges

• controlled mainly by H.
• Large value of H result in significant

clustering, where the deviation from the
random graph is large.

large part of the views of any two communicating
nodes overlap right after communication
(freshest entries).

• Large values of S, clustering is close to
random

18

April 2009
52

Peer sampling service:
Summary

• Experimental study
• How random are the resulting graphs?
• What properties may affect the applications

• Global randomness
• Best configuration is the shuffler irrespective of the peer

selection

• Load balancing
• Blind performs poorly
• Best configuration is shuffler while healer performs well

• Fault-tolerance
• More important parameter is H: the higher the better
• Shuffler is slow to remove dead links

April 2009
53

Overlay maintenance

Data exchange
Membership data

Data processing

Peer selection

List of
Neighbours

Push

Random

Random
 merging

 LpbCast
[Eugster & al, DSN 2001,

ACM TOCS 2003]

 List of
Neighbours

PushPull

Head

Age-based
Merging (Head)

 Newscast
[Jelasity & van Steen, 2002]

 List of
neighbours

Oldest

Shuffle

 Cyclon
 [Voulgaris & al

 JNSM 2005]

April 2009 54

Imposing more structure:
biasing the peer sampling

19

April 2009
55

Structuring the network

• T-Man[Jelasity&Babaoglu, 2004]
• Peers optimize their view using the view of their close

neighbours
• Ranking function

• Peer selection
• Rank nodes in the view according to R

• Returns a random sample from the first half

• Data exchange
• Rank the elements in the (view+buffer) according to R
• Returns the first c elements

• Data processing
• Keep the c closest

April 2009
56

Gossip-based topology management

• Line: d(a,b) =|a-b|

• Ring: interval[0,N], d(a,b)=min(N-|a-b|,|a-
b|)

• Mesh and torus: d=Manhattan distance

• Sorting problems: any other application
dependent metric

April 2009
57

T-man: torus

Cycle 3 Cycle 8 Cycle 5 Cycle 15

20

April 2009
58

T-man wrap up

• Generate a large number of structured
topologies

• Exponential convergence (logarithmic in the
number of nodes)

• Irrespective of the initial topology

• Exact structure

April 2009
59

Clustering similar peers

• Vicinity: Introducing application-dependent
proximity metric [VvS, EuroPar 2005]

• Two-layered approach
1. Biased gossip reflecting some application semantic

2. Unbiased peer sampling service

April 2009
60

System model

• Semantic view of l semantic neighbours

• Semantic proximity function S(P,Q).

• The higher the value of S(P,Q), the “closer” the
nodes.

• The objective is to fill P’s semantic view to
optimize

21

April 2009
61

Gossiping framework

• Target selection
• Close peers

• All nodes are examined: create a “small-world”
like structure so that new nodes are discovered.

PSS

Clustering
service

PSS

Clustering
service

PSS

Clustering
service

April 2009
62

Gossip parameter setting

• Clustering protocol
Peer selection

• tail “oldest timestamp”

Data exchange
• aggressively biased,

• select the g items the closest from semantic
and random views

Data processing
• select the l closest peers (buffer, semantic and

random views)

• Peer sampling service

April 2009 63

Improving routing: Kleinberg-
like peer sampling

22

April 2009
64

Motivation

• Small-world overlay networks
• Neighbour set: Close + shortcuts
• Theoretical analysis: Asymptotic bounds on routing performance
(random versus Kleinberg’s shortcuts)

• Epidemic-based overlay networks
• Decentralized overlay building and maintenance using gossip-

based protocols
• Practical systems: efficient routing

Epidemic-based small-world networks

Clustering protocols: close neighbours
Peer sampling service: shortcuts

April 2009
65

Motivation

April 2009
66

Objective

Leveraging theory: how to apply Kleinberg’s results
to improve upon current epidemic protocols?

 Epidemic-based small world networks

23

April 2009
67

Small world overlay network

• Neighbour set

• Local contacts

• Shortcuts

• Shortcut selection

• Random [Watts &Strogatz1998]

` Greedy routing

• Harmonic distribution [Kleinberg
2000]

 Greedy routing

• Results

• Asymptotic bounds : Magnitude order
of routing performance

April 2009
68

Shortcut selection and routing
performance

• Random selection
• Shortcuts picked uniformly

at random

• Greedy routing
performance

• Kleinberg selection
 Selection with probability

proportional to distance

• Greedy routing performance

April 2009
69

Small-world gossip-based networks

Clustering service

Peer selection: “closest”
Data exchange: c entries
Data Processing: “closest” kept

Peer sampling service

Peer selection: random
Data exchange: c/2 entries

Data Processing: random

Close links

Shortcuts

Assume each node has some coordinates in a d-dimensional space

[Watts &Strogatz1998]

24

April 2009
70

Topologies

Grid, Manhattan distance

Close neighbours: neighbours on the Grid

Grid, Euclidian distance

Close neighbours: one in each wedge

April 2009
71

Gossip-based small-world networks

• Leverage theory

• Decentralized selection of neighbours
• Clustering protocol: local neighbours

• Peer sampling: shortcuts

• Shortcut selection: peer sampling service
• Random selection: random peer sampling

• Kleinberg selection: tune the view so that it matches
the Kleinberg’s distribution

• What are we interested in?
• Impact on the routing efficiency

• Impact on the graph properties

April 2009
72

Kleinberg’s peer sampling

• Use standard clustering protocol for local neighbours
• Shortcuts: bias Cyclon protocol to approximate

Kleinberg’s distribution (probability of being kept is

Peer sampling service

Peer selection: random
Data exchange: k entries,

c-k kept bias by Kleinberg’s

 distribution
Data Processing: c-k entries

 exchanged

B C D E F Peer A

Peer selection

Kleinberg’s

shortcuts

Data

exchange

K=2

25

April 2009
73

Implementation

B C D E F Peer A

B B+C B+C+D B+C+D+E+F B+C+D+E

0 1 Prob to keep as a Kleinberg shortcut

Data exchange: [E,F]

G H I J A Peer B

G G+H G+H+I G+H+I+J+A G+H+I+J

0 1 Prob to keep as a Kleinberg shortcut

Data exchange: [I,J]

April 2009
74

Kleinberg’s peer sampling

• Example

B C D E F

G H I J A

Peer A

Peer B

B C D E F

G H I J A

Peer A

Peer B

Peer selection

Kleinberg’s

shortcuts

Data

exchanged

E F

I J B C D I J

G H E F A

E E`

E E

April 2009
75

Routing performance

26

April 2009
76

Impact on the degree

April 2009
77

Path length

April 2009
78

Clustering coefficient

27

April 2009
79

Outcomes

• Possible to tune the peer sampling to achieve a routing
similar to the one obtained with a Kleinberg’s shortcut
selection
• Driven by the shuffle length

• Resulting graph properties
• Degree distribution and average path length similar to a

random peer sampling
• Clustering coefficient: slightly higher
• Harmless to most distributed applications

• Improves the clustering algorithm

April 2009 80

Structuring the network:
ordering nodes

Gossip-based distributed slicing

[JK,P2P 2006] [FGJKR,ICDCS 2007]

April 2009
81

Why slicing a P2P network?

• Slices: sets of size proportional to the size of
the network

• Heterogeneous environment: Identify sets of
specific nodes
• Live streaming applications (upload)

• Load balancers in datacenters (CPU,availability)

• File sharing systems (number of files, storage)

 Basic structure: slice

28

April 2009
82

Why slicing is not trivial?

• Presence of churn

• Dynamic heterogeneity

• No global information

20
2

6

1
5

Wealthy?

20
300

150

815
220

Poor?

April 2009
83

0 100

Classifying nodes

68

8

72

75
65

20

71

27

Attribute

values ai

80

April 2009
84

Slicing the network

0 100

68

8

72

75
65

20

71

27

80

8 20 27 65 68 71 72 75 80

0 1 8 20 27 65 68 71 72 75 80

0 1 8 20 27 65 68 71 72 75 80

Slice #3 Slice #1 Slice #2

29

April 2009
85

Objective

Create and maintain equally balanced

slices of the network in a fully
decentralized manner

Upon termination: each node knows the slice
it belongs to

April 2009
86

Gossip-based approach

Use a gossip-based approach to estimate to
which partition a node belongs

• Scalable

• Robust

• Based on local knowledge

• Fast convergence

April 2009
87

System model

• Dynamic system of peers uniquely identified

• Each node belongs to one slice and has

• an attribute: capacity in the metric of interest

• a random number

• a view of c entries (peer sampling)

• a time stamp

30

April 2009
88

Random slices

1

7

8

9

10

3
2

4

6 5

April 2009
89

Random slices

1

0.21

7

0.09

8

0.67

9

0.43

10

0.98

3

0.52
2

0.11

4

0.22

6

0.55

5

0.87

April 2009
90

Random slices

1

0.21

7

0.09

8

0.67

9

0.43

10

0.98

3

0.52
2

0.11

4

0.22

6

0.55

5

0.87

31

April 2009
91

Gossip-based approach

0 100

68

8

72

75
65

20

71

27

80

8 20 27 65 68 71 72 75 80

0 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Slice #3 Slice #1 Slice #2

Matching: gossip-based protocol

April 2009
92

Ordered slicing algorithm: basic
operation

72 71 20 65 68 75 27 8 80

0.6 0.5 0.3 0.7 0.1 0.4 0.2 0.9 0.8

72 71 20 65 68 75 27 8 80

0.6 0.5 0.9 0.7 0.1 0.4 0.2 0.3 0.8

Node a Node b

8 20 27 65 68 71 72 75 80

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

April 2009
93

The ordered slicing algorithm

On each node q

• Pick a node p at random in its view

• Initiate a gossip with p
• Send its own

• Receive the freshest c entries from p

• Select i such that
• Swap random values

32

April 2009
94

Ordered slicing algorithm:
maintenance

• New nodes discovery: peer sampling (age-
biased)

• Random values: uniform spread

• Once the order stabilizes: each node knows
which slice it belongs to

A peer with a number <0.5 knows in the first 50% of
the nodes according to the metric

April 2009
95

Analogy with average

• Weight conserving property

• The swapping does not influence this
value (=0) but always reduces the
disorder value

April 2009
96

Age-based technique

4.0x106

6.0x106

8.0x106

1.0x107

1.2x107

1.4x107

1.6x107

1.8x107

2.0x107

2.2x107

 0 10 20 30 40

di
so

rd
er

 (
)

maturity age in cycles

c=2
c=4

c=2

c=4

c=8

 g

Young nodes disordered
Old nodes protected

33

April 2009
97

Main results

• Exponential decrease

of the disorder

• Quick stabilization

• Relatively well-defined slices

• Stabilizes as soon as churn stops

April 2009
98

Ordered slicing: optimizations & issues

• Further optimization: Local measure of the

disorder [Fernandez & al, ICDCS 2007]
• Issues

• Uniformity requirement

0 1 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.99

Slice #3 Slice #1 Slice #2
0 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Slice #3 Slice #1 Slice #2

April 2009
99

Ordered slicing: issues

• Uniformity requirement

• Failures are correlated to the attribute values

Provides an ordering not an accurate ranking

0 0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Slice #3 Slice #1 Slice #2

0 8 20 27 65 68 71 72 75 80

34

April 2009
100

Ordered slicing

• Issue when failures are correlated to
the attribute values

• Fix the uniformity requirement

• [Fernandez & al, ICDCS 2007]
• Infer slice from a sample of attributes

• Gossip-based propagation

April 2009 101

Why would we want to route efficiently
in something else than a DHT?
Why is gossip relevant here?

• Range queries in a P2P overlay: VoroNet-RayNet
[Beaumont & al, IPDPS 2006, OPODIS 2007]
• Content-based publish-subscribe systems: Sub-2-
Sub [Voulgaris&al, IPTPS 2006]

April 2009 102

VoroNet
A scalable object network
based on Voronoï tessellations

35

April 2009
103

Design rationale

• Efficient data location service

 Efficiency = expressiveness + completeness

• Expressiveness versus completeness
• Unstructured overlay/Structured overlays (DHT)

• Overlay structure should reflect the
application one
• Linking objects in an efficient routing overlay

• Use of Voronoï tesselation of the object space

• Efficient routing: Kleinberg small world model

April 2009
104

No completness

Guarantees

Complete

(w.h.p.)

Key Based,

No Range queries

Expressiveness

Exhaustiveness

Key based

Range queries

Attributes-based

Range queries

over multiple

dimensions

Content-based

DHT

Unstructured

Skip-Lists
VoroNet

Overlay linking computing entities

Overlay linking application objects

2 dimensions

Our design space:

efficient, multi dimensionnal overlay(s)
with complete exhaustiveness

SkipWebs

April 2009
105

Model

• An object is described by a set of attributes
• Objects with “near” attributes are neighbours in the overlay
• Multidimensional naming space
• For ease of explanation

• we limit to the case where dimension is 2

• Native and efficient support for efficient query mechanisms
• Scalable, polylogarithmic routing
• No hash mechanisms Ordering preserved

• Generalizes Kleinberg Small-World model

• State per object is O(1)
• Independently of the object set size and distribution
• The basic overlay is based on the Voronoï tessellation of the

objects set in the Euclidean naming space

36

April 2009
106

Application object
A peer in the VoroNet overlay

0
0

1

1

[0:1]x[0:1] objects space

Computing entities
Node ni Possess oi objects ni participates oi times in the overlay

April 2009
107

Computing entities
Node ni Possess o objects ni participates o times in the overlay

Application object
A peer in the VoroNet overlay

0
0

1

1

[0:1]x[0:1] objects space Voronoï Tesselation
of the set of objects

April 2009
108

Computing entities
Node ni Possess o objects ni participates o times in the overlay

Application objects
Peers in the VoroNet overlay

0
0

1

1

[0:1]x[0:1] objects space Voronoï Tesselation
of the set of objects

Links between objects
(Adjacencies in the
Voronoï tesselation)

37

April 2009
109

Voronoï tesselation

• Definition
• For each point p among a set
• p’s cell contains all points nearest

to p than to any other point

• The dual of the Voronoï diagram
is the Delaunay triangulation
• Mean(#neighbors) 6
• Navigability: greedy Euclidean

routing always succeeds (in linear
number of steps)

• Overlay primary links between
objects are adjacency links of
objects (virtual) cells

Object

Cell

Voronoï edge
(adjacency relation)

April 2009
110

Object insertion
• Each object knows

• Neighbors coordinates and
zones

• A joining peer p routes a
message to its coordinate
• Peer pi is responsible for p

insertion
• pi computes p’s new zone and

modifications to its neighbors’s
(e.g. pj) zones

• pi disseminates changes to its
neighbors and notify p of its
new neighborhood

April 2009
111

Efficient routing

• Greedy routing
• Each routing step gets closer to the destination A

• Delaunay triangulation properties ensure that this
succeeds deterministically

• But…..may be O(N) steps

• Small world routing
• Additional shortcuts

• Extension of the Kleinberg’s model

• Polylogarithmic routing in N : O(logx(N))

38

April 2009
112

Extending the Kleinberg model

• Each object chooses a shortcut destination point
according to a harmonic distribution, and uniform
direction

• The topology is not a grid !
• The destination point is not necessarily an object …

• But the destination stands in an object cell

• The object chosen as shortcut neighbour is always the
object which has the shortcut destination in its zone

• Greedy routing ensures paths of polylogarithmic size

April 2009
113

Management of long links

April 2009
114

How many neighbours?

• Close neighbors: Voronoï neighbours (Mean 6)

• Shortcuts
• Simulations have shown that around 6 shortcuts is a good

tradeoff between maintenance cost and performance

• Back long link neighbours
• Dependent on the distribution of objects,
• Balanced even with sparse distributions due to long link

properties (random versus harmonic)

• Overall neighbour set size is O(1)
• Independent of the number of objects
• Independent of objects distribution

39

April 2009
115

Experimental settings
• 300.000 objects (no object leaving)

• 2 object distributions in [0:1]x[0:1]
• Uniform

• Sparse: 5 equally popular regions. Popularity of objects
around a region follows a power law with = 5

April 2009
116

Simulation: object degree
number of Voronoï neighbours

Uniform Sparse

Object out-degree does not depend of the objects distribution in space

April 2009
117

Route cost evolution has a logarithmic shape.

This does not depend on objects distribution.

Polylogarithmic routes (1)

40

April 2009
118

Uniform Sparse

• Linear improvement: Using k shortcuts provides a routing that is almost k times
more efficient
• At each step, the probability of using a long link that divide the path by log(N) is k/log(N)
• A reasonable amount of long links is ~6 for a 300.000 objects overlay

Using several long links
improves routing performance

April 2009 119

Voronoï cell computations
are an overkill

RayNet: gossip-based approximation
of complex structures

April 2009
120

Voronoï diagrams, RayNet rationale

• VoroNet
• Complex structure to compute, to maintain in face

of churn, potential unlimited number of
neighbours

• What really matters?
• Neighbours: to ensure correct routing

• Using an approximation of the structure
is enough to compute such neighborhoods

• Gossip-based protocols for Voronoï neighbours
and shortcuts

41

April 2009
121

Gossip-based construction of RayNet

• Local links: Coverage and closeness
• Gossip-based construction of approximate Voronoï links
• Close objects (in the semantic space) in all directions

• Shortcuts: Kleinberg peer sampling

Peer Sampling

Coverage and

closeness
Routing + search

Dynamism (insertions)

Maintain connectivity

purpose

Use objects samples to improve the view

Challenge:

Evolution of
local views towards

a global routing

structure

April 2009
122

Coverage and closeness

An object o’s view == Voronoï neighbours

Idea:
• Exchange views & converge towards an approximation of Voronoï

neighbours

• No need to compute the Voronoï cells: use the volume as an
indication of convergence (the smaller, the better)

o

April 2009
123

Monte Carlo cell size estimation

• Idea: sample the boundaries of the zone using “rays”
• Gossip-based protocol: evaluate the view as a whole (configuration)

42

April 2009
124

View update operation: naïve approach

• View size is c=3d+1 peers

• Exchange entire views : o.view + opartner.view

• For each set S of objects of size c, in o.view +
opartner.view
• Estimate the volume of o’s cell in the diagram of S

• Keep the set with minimal volume as the new view

• Effective, but there are O(c!) configurations to
examine…

April 2009
125

View update operation:
efficient approach

• Determine the potential contribution of each object to the
coverage and closeness (ie to the volume of o’s cell)

• For each object o’ in o.view + opartner.view

• Compute the volume of o’s cell in o.view + opartner.view without o’

• Keep the c objects with the greatest contribution

Ignoring this object results

in a bigger zone:
High contribution

Ignoring this object does not

 impact the size of the zone:
No contribution

April 2009
126

Efficient routing

• Routing in the
approximate Voronoï
diagram requires O(N)
hops

• Small-Worlds models:
• Small paths +

navigability

• Using biased peer
sampling

• O(logd N) routing with
1 shortcut

u
a

b
c

d

e

v

43

April 2009
127

Simulations

• Settings
• 1.000 to 7.000 objects

• Emergence from a chaotic state
• No RayNet links

• Random graph for the Kleinberg-biased peer
sampling service

• Metrics
• Self-organization speed

• Cycles needed before full routing success

• Routing efficiency
• Mean hops

April 2009
128

Self-organization speed

dimension = 2 dimension = 6

Less than 35 cycles of exchanges are needed

for reaching a structure where all routes succeed onto the correct object

April 2009
129

Routing efficiency

a. Routing hops b. Highlights O(logx N) routing

Routing efficiency is achieved by the biased peer sampling layer

44

April 2009
130

RayNet wrap-up

• RayNet, overlay for exhaustive and
expressive queries
• Self-organizing

• Routing efficiency

• Approximation of a complex & ‘ideal’
structure while still benefiting from its
capacities
• Expressiveness of the query model preserved

• Efficient up to 10 dimensions

April 2009 131

Gossiping for content-
based publish-subscribe
systems

Sub-2-sub [VRKvS, IPTPS 2006]

April 2009
132

Pub-sub systems

• Asynchronous event notification system
• A set of Subscribers register their interest (subscriptions)
• A set of Publishers issue some events (events)

• Publish-subscribe system
• Mapping between events and matching subscriptions
• An event is delivered to all interested subscribers, and no others
• Loosely coupled events sources and targets

• Flexible and seamless messaging substrate for applications

Subscribers Publishers Pub-sub System

45

April 2009
133

Pub-sub systems:
expressiveness

• Differences in subscription expressiveness

• System classification
• Topic-based ~ Application-level multicast

 topic=houses_sales

• Attribute-based

 s1=(city=Rennes) (capacity=2_Bedrooms)

• Content-based

 s1=(city=Rennes || Saint Malo) &&
(capacity=3_Bedrooms || price < 300,000 EUR)

= (peer to peer) Group Multicast
Scribe (Pastry), CAN-Multicast, Bayeux (Tapestry), …

April 2009
134

Content-based: (semi-)centralized
solutions

• Current systems: One or more centralized servers
(brokers)
• e.g., Tibco (Web Services Eventing)

• Servers become a bottleneck/single point of failure
• Reverse Path Forwarding

• Notifications follow reverse paths of subscriptions

• Brokers deliver events to interested subscribers
• Brokers end up maintaining the whole set of subscriptions

• network size increases
• node churn increases
• more events are published

• Triggered interest in decentralized P2P solutions

April 2009
135

Sub-2-Sub

[Voulgaris & al, IPTPS 2006]
• Peers are subscriptions

• Rather than physical nodes
• Each peer manages its own subscription(s)
• The more it subscribes, the more it contributes

• Self-organizing overlay
• Eventually cluster similar subscriptions
• Efficient event dissemination structure
• Adapted to dynamism

Gossip-based algorithm to cluster peers according to
their interests

46

April 2009
136

Sub-2-Sub: definitions

• Assume N attributes (real numbers)
• A1, A2, …, AN

• The N-hyperspace

• Subscriptions are range (trivially exact) predicates on one or
more attributes
• E.g. A2==3.07 && (2.5< A4<4.7)
• A N-hypercube

• Events define exact values for all attributes
• E.g. {A1,A2,A3,A4} = {3, 0, 7, 10.5}
• A point

• The set of all possible events define the event space, It’s an
continuous space of dimension N

April 2009
137

Sub-2-Sub: Key Concept

“Partition event space in homogeneous subspaces”
(homogeneous subspace: all its events have the same subscribers)

April 2009
138

Sub-2-Sub: Operation

1. Let subscribers of “near” subspaces discover each other
2. Organize subscribers of each subspace in a ring
3. To publish an event, navigate to the right subspace, and hand

the event to any one subscriber
• Event reaches all and only interested subscribers,

autonomously!

47

April 2009
139

Sub-2-Sub overlay creation

• Maintain connectivity

• Create clusters of
“related” subcribers

• Organize subscribers
within a subspace in a
ring ?

• Peer sampling service

• Clustering service

• Ranking service

Gossip around

April 2009
140

Maintaining connectivity

• Connectivity = no
overlay-network partition

• Peer sampling service:
Cyclon

 [S. Voulgaris, D. Gavidia, M. van
Steen. Journal of Network and Systems
Management, Vol. 13, No. 2, June
2005]

April 2009
141

Forming clusters: gossip-based
clustering

• Keep a small fixed-sized set of neighbors with similar
interests

• Similarity is based on a notion of distance
• the minimum Euclidean distance between two

subscriptions
(Note: Distance 0 means some overlapping interests)

• peerSelect()
• Choose a neighbor in the random view provided by

peer sampling

• select()
• Keep neighbors of smallest distance

48

April 2009
142

Organizing clusters in rings: gossip-
based structuring

• Each subscription is given a fully random ID upon creation
• Total order on IDs

• Defined only to permit ring creation

• peerSelect()
• Choose a neighbor in the similar interest view

• update()
• Keep neighbors of smallest distance

• Distance definition :
• 0 (ZERO), if overlapping and ID is the nearest for part of the supscriptions overlap
• INFINITE, otherwise

• update() keeps neighbors whose ID is nearer from the subscription
ID for any portion of subscription hypercube
• Size of the neighbor set depends on subscription width

April 2009
143

Sub-2-Sub Architecture

• Three-layer
architecture

• Each layer gossips
to a neighbor’s
respective layer

Overlapping subscribers
(biased peer sampling)

Random subscribers
(peer sampling)

Ring of subscribers
(structured peer sampling)

April 2009
144

Sub-2-Sub Architecture

• RPS finds random links (needed for BPS)

• and keeps the overlay connected

Overlapping subscribers
(biased peer sampling)

Random subscribers
(peer sampling)

Ring of subscribers
(structured peer sampling)

49

April 2009
145

Sub-2-Sub Architecture

Proximity between 2 subscribers =

• 0 (ZERO), if overlapping

• the Euclidean distance between the 2 hypercubes,
otherwise

Overlapping subscribers
(biased peer sampling)

Random subscribers
(peer sampling)

Ring of subscribers
(structured peer sampling)

April 2009
146

Sub-2-Sub Architecture

• Proximity between 2 subscribers =
• 0 (ZERO), if overlapping and “visible”
• INFINITE, otherwise

• Variable length view

Overlapping subscribers
(biased peer sampling)

Random subscribers
(peer sampling)

Ring of subscribers
(structured peer sampling)

April 2009
147

Sub-2-Sub in a nutshell

Attribute value

S
e
q
u
e
n
c
e
 I

d

Attribute value

S
e
q
u
e
n
c
e
 I

d

Attribute value

S
e
q
u
e
n
c
e
 I

d

Random links

-Traditional
random-based
epidemic
 algorithms

Interest links
- Peer selection and links kept

based on proximity in the
attribute space

d(i,j) = 0 if no overlap

Structured links
•Peer selection: in the
ring
•Links kept, sorted
according to growing
id
•Subscription cover

50

April 2009
148

Dissemination of events

• The event is sent to any of the subscription peer
• Greedy routing using Euclidean distance along random

neighbors and interest proximity links

• It eventually reach one of the interested subscriber
dissemination begins

• A node receiving an event for the first time, forwards it:
• Along its two ring links

• To one random subscriber interested in the event (if exists)

• Load balancing
• Subscribers forward each event up to 3 times.

April 2009
149

Sub-2-Sub summary

• Showed that a dedicated P2P present soundness for
complex applications such as content/based

• Sub-2-Sub
• Accurate All and only interested nodes receive event
• Autonomous No need for extra device
• Collaborative
• Self-organized
• Very scalable (nodes and attributes)

• Experiments for 10 attributes present the same
results

• Current work
• Limiting the number if neighbours by articially

manipulating the size of subscriptions

April 2009
150

The take-away slide

Gossip-based protocols are a powerful tool in large-scale
distributed computing

• Overlay maintenance
• Dissemination
• Search
• Distributed computations

You’ve seen a small subset only

An exciting research agenda
1. Coping with selfish behaviors
2. Coping with malicious nodes
3. Adapting protocols to node capacities
4. Leveraging multiple overlays
5. Increasing the target applications

51

April 2009
151

References

[Birman & al, 1999] Bimodal multicast. K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M.
Budiu and Y. Minsky", ACM Transactions on Computer System, 17(2) 1999.

[Bala & al, 2007] Build One, Get One Free: Leveraging the Coexistence of Multiple P2P
Overlay Networks. Balasubramaneyam Maniymaran,Marin Bertier, Anne-Marie Kermarrec..
In Proceedings of ICDCS 2007, Toronto, Canada, June 2007.

[Beaumoont & al, 2007 b] Olivier Beaumont, Anne-Marie Kermarrec, Loris Marchal, Etienne
Rivière. VoroNet: a scalable object network based on Voronoi Tessellations. In
Proceedings of 21st IEEE International Parallel & Distributed Processing Symposium (IPDPS).
Long Beach, CA, USA, March 2007.

[Beaumont & al,2007] Olivier Beaumont, Anne-Marie Kermarrec, Etienne Rivière. Peer to peer
multidimensional overlays: Approximating complex structures. In OPODIS, 11th
International conference on principles of distributed systems, Guadeloupe, France, December
2007.

[Bonnet&al, 2007] Francois Bonnet, Anne-Marie Kermarrec, Michel Raynal. Small world
networks: From theoretical bounds to pratcical systems.In OPODIS, 11th International
conference on principles of distributed systems, Guadeloupe, France, December 2007.

[Demers & al, 1988] Epidemic algorithms for replicated database maintenance. A.
Demers, D. Greene, C. Houser, W. Irish, J. Larson, S. Shenker, H Sturgis, D, Swinehart and
D. Terry ACM SIGOPS Operating Systems Review . 22 (1). 1988.

[Eugster & al, 2003] Lightweight Probabilistic Broadcast. P. Eugster, S. Handurukande, R.
Guerraoui, A.-M. Kermarrec, and P. Kouznetsov. ACM Transaction on Computer Systems,
21(4), November 2003.

[Eugster & al, 2004] From Epidemics to Distributed Computing. P. Eugster, R. Guerraoui, A.-
M. Kermarrec, and L. Massoulié. IEEE Computer, 37(5):60-67, May 2004

April 2009
152

References

[Fernandez & al] Distributed Slicing in Dynamic Systems, Antonio Fernández, Vincent
Gramoli, Ernesto Jiménez, Anne-Marie Kermarrec, Michel Raynal, Proceedings of the 27th
International Conference on Distributed Computing Systems (ICDCS'07) jun 2007

[Jelasity & al, 2003] Newscast Computing M. Jelasity, W. Kowalczyk, M. van Steen. Internal
report IR-CS-006, Vrije Universiteit, Department of Computer Science, November 2003.
Submitted for publication.

[Jelasity & al, 2004] The Peer Sampling Service: Experimental Evaluation of Unstructured
Gossip-Based Implementations. M. Jelasity, R. Guerraoui, A.-M. Kermarrec, M. van
Steen. Proc. 5th ACM/IFIP/USENIX International Middleware Conference, Toronto, Canada,
Oct. 2004

[Jelasity & al, 2005] Gossip-based aggregation in large dynamic networks M. Jelasity, A.
Montresor, and O. Babaoglu. ACM Transactions on Computer Systems, 23(3):219–252,
August 2005.

[Jelasity & al, 2005] Gossip-based aggregation in large dynamic networks M. Jelasity, A.
Montresor, and O. Babaoglu. ACM Transactions on Computer Systems, 23(3):219–252,
August 2005.

[Jelasity & Kermarrec, 2006] Ordered Slicing of Very Large-Scale Overlay Networks. M.
Jelasity and A.-M. Kermarrec. In The Sixth IEEE Conference on Peer to Peer Computing
(P2P), Cambridge, UK, 2006.

[Jelasity & Babaoglu, 2006] Gossip-based overlay topology management. M. Jelasity and O.
Babaoglu. T-Man: In Engineering Self-Organising Systems: Third International Workshop
(ESOA 2005), Revised Selected Papers, volume 3910 of Lecture Notes in Computer Science,
pages 1–15. Springer-Verlag, 2006.

April 2009
153

References

[Kermarrec & Steen, 2007] Gossipong in Distributed Systems. Anne-Marie Kermarrec &
Maarten van Steen, ACM Operating System Review 41(5). October 2007

[Kermarrec & al, 2003] Probabilistic Reliable Dissemination in Large-Scale Systems. A.-M.
Kermarrec, L. Massoulié, and A. J. Ganesh. IEEE Transactions on Parallel and Distributed
Systems, 14(3), March 2003.

[Patel&al, 2006] JetStream: Achieving Predictable Gossip Dissemination by Leveraging
Social Network Principles J. Patel, I. Gupta, N. Contractor Proc. of the Fifth IEEE Intnl.
Symp. on Network Computing and Applications (NCA), pp. 32-39, 2006.

[Voulgaris & al, 2005] CYCLON: Inexpensive Membership Management for Unstructured
P2P Overlays. (preprint). S. Voulgaris, D. Gavidia, M. van Steen. Journal of Network and
Systems Management, vol. 13(2):197-217.

[Voulgaris & Steen, 2005] Epidemic-style Management of Semantic Overlays for Content-
Based Searching. S. Voulgaris, M. van Steen. Proc. Int'l Conf. on Parallel and Distributed
Computing (Euro-Par), Lisbon, Portugal, August 2005.

[Voulgaris & al, 2006] SUB-2-SUB: Self-Organizing Content-Based Publish and Subscribe
for Dynamic and Large Scale Collaborative Networks. S. Voulgaris, E. Riviere, A.-M.
Kermarrec, M. van Steen. Proc. 5th Int'l Workshop on Peer-to-Peer Systems (IPTPS), Santa
Barbara, CA, February 2006

