
1 © R. Guerraoui 

Universal constructions  

R. Guerraoui 
Distributed Programming Laboratory 



2 

Universality [Her91] 

  Definition 1 : A type T is universal if, together
 with registers, instances of T can be used to
 provide a wait-free linearizable implementation of
 any other type (with a sequential specification) 

  Definition 2: The implementation is called a
 universal construction 



3 

Consensus 

  Theorem 1: Consensus is universal [Her91] 
  Corollary 1: Compare&swap is universal 
  Corollary 2: Test&set is universal in a system of

 2 processes (it has consensus number 2) 

  Corollary to FLP/LA: Register is not universal in
 a system of at least 2 processes 



4 

Shared memory model 

Registers (read-write) 
+ Consensus objects 

P2 

P3 P1 



5 

The consensus object 

  One operation propose() which returns a value. When a
 propose returns, the process decides 

  Agreement: No two processes decide differently 
  Validity: Every decided value is a proposed value 
  Termination (wait-free): Every correct process that

 proposes a value eventually decides 



6 

Universality 

  We consider first deterministic objects and then
 non-deterministic ones 

  An object is deterministic if the result and final
 state of any operation depends solely on the
 initial state and the arguments of the operation 



7 

Example (FIFO Queue) 
Sequential deterministic specification 

P1 
Enq(2) Deq() -> 1 

Q Q 

P0 
Q 

Enq(1) Deq() -> 2 

Q 



8 

Example (Set) 
Sequential non-deterministic specification 

P1 
Insert(2) Remove() -> 1 or 2 

Q Q 

P0 
Q 

Insert(1) 

Q 

Remove() -> 1 or 2 



9 

Universal construction (1) 

  We assume a deterministic object 

  We give an algorithm where 
 every process has a copy of the object

 (inherent for wait-freedom) 
 processes communicate through registers and

 consensus objects (linearizability) 



10 

P1 
Enq(2) 

Q Q 

P0 
Q Q 

Enq(1) 

Example (FIFO Queue) 
Non-linearizable execution 

Deq() -> 2 

Deq() -> 1 



11 

Universal algorithm (1) 

P1 
Read() Prop() 

Reg Cons 

P0 
Cons Reg 

Write(x) Prop() 



12 

Shared objects   

  The processes share an array of  n SWMR
 registers Lreq (theoretically of infinite size) 

  This is used to inform all processes about which
 requests need to be performed 



13 

Shared objects   

  The processes also share a consensus list Lcons (also of
 infinite size) 

  This is used to ensure that the processes agree on a total
 order to perform the requests (on their local copies) 

 We use an ordered list of consensus objects 
 Every such object is uniquely identified by an integer 
 Every consensus object is used to agree on a set of

 requests (the integer is associated to this set)   



14 

Universal algorithm (1) 

  The algorithm combines the shared registers
 Lreq[I] and the consensus object list Lcons to
 ensure that: 
 Every request invoked by a correct process is

 performed and a result is eventually returned
 (wait-free) 

 Requests are executed in the same total order
 at all processes (i.e., there is a linearization
 point) 

 This order reflects the real-time order (the
 linearization point is within the interval of the
 operation) 



15 

Linearization (FIFO Queue) 

Enq(2) Deq() -> 1 

Q Q Q Q 

Enq(1) Deq() -> 2 



16 

Local data structures 

  Every process also uses two local data
 structures: 
  A list of  requests that the process has

 performed (on its local copy): lPerf 
  A list of requests that the process has to

 perform: lInv 

  Every request is uniquely identified 



17 

Universal algorithm (1) 

  Every process pI executes three // tasks: 
 Task 1: whenever pI has a new request, pI

 adds it to Lreq[I] 
 Task 2: periodically, pI adds the new elements

 of every Lreq[J]  into lInv  
 Task 3: while (lInv – lPerf) is not empty, pI

 performs requests using Lcons 



18 

Task 3 

  While lInv – lPerf is not empty  
●  pI proposes lInv – lPerf  for a new consensus in

 Lcons (increasing the consensus integer) 
●  pI performs the requests decided (that are not in

 Lperf) on the local copy   
●  For every performed request: 

pI returns the result if the request is in Lreq[I] 
pI puts the request in lPerf 



19 

Example (FIFO Queue) 

P1 

P0 
Cons1 

Enq(1) 

Enq(2) Deq() -> 1 

Deq() -> 2 

Cons2 Cons3 

Cons4 



20 

Correctness 

  Lemma 1 (wait-free): every correct process pI
 that invokes req eventually returns from that
 invocation 

  Proof (sketch): Assume by contradiction that pI
 does not return from that invocation; pI puts req
 into Lreq (Task 1); eventually, every proposed
 lInv - lPerf contains req (Task 2); and the
 consensus decision contains req (Task 3); the
 result is then eventually returned (Task 3) 



21 

Correctness 

  Lemma 2 (order): the processes execute the
 requests in the same total order 

  Proof (sketch): the processes agree on the same
 total order for sets of requests and then use the
 same order within every set of requests (the
 linearization order is determined by the integers
 associated with the consensus) 



22 

Correctness 

  Lemma 3 (real-time): if a request req1 precedes
 in real-time a request req2, then req2 appears in
 the linearization after req1  

  Proof (sketch): it directly follows from the
 algorithm that the result of req2 is based on the
 state of req1 



23 

Why not? 

  Every process pI executes three // tasks: 
 Task 1: whenever pI has a new request, pI

 adds it to lInv  
 Task 3: while (lInv – lPerf) is not empty, pI

 performs requests using Lcons 



24 

Universality (1 + 2) 

  We consider first deterministic objects and then
 non-deterministic ones 

  An object is non-deterministic if the result and
 final state of an operation might differ even with
 the same initial state and the same arguments 



25 

Example (Set) 

P1 

P0 
Cons1 

Cons2 Cons3 

Insert(1) 

Insert(2) Remove() -> 1 

Cons3 

Remove() -> 2 

Cons4 

Remove() -> 1 

Cons4 

Remove() -> 2 



26 

Non-linearization 

Insert(2) Remove() -> 1 

S S S S  

Insert(1) Remove() -> 1 



27 

A restricted deterministic type 

  Assume that a non-deterministic type T is defined
 by a relation δ that maps each state s and each
 request o to a set of pairs (s’,r), where s’ is a
 new state and r is the returned result after
 applying request o to an object of T in  state s. 

  Define a function δ’ as follows:  
For any s and o,   δ’(s,o) ∈ δ(s,o).  

The type defined by δ’ is deterministic 



28 

It is sufficient to implement a type
 defined by δ’ ! 

  Every execution of the resulting (deterministic)
 object will satisfy the specification of T. 

P1 

P0 
Cons1 

Cons2 Cons3 

Insert(1) 

Insert(2) Remove() -> 1 

Cons3 

Remove() -> 1 

Cons4 

Remove() -> 2 

Cons4 

Remove() -> 2 



29 

Task 3 (Preserving non-determinism) 

  While lInv – lPerf is not empty  
●  pI produces the reply and new state (update)

 from request by performing:  
          (reply,update):= object.exec(request) 
●  pI proposes (request,reply,update) to a new

 consensus in Lcons (increasing the consensus
 integer) producing (re,rep,up)  

●  pI updates the local copy: object.update(up) 
●  pI returns the result if the request is in Lreq[I] 
●  pI puts (req,rep,up) in lPerf 


