
1 © R. Guerraoui

 Professor Rachid Guerraoui

 Distributed Programming Laboratory

 EPFL

Principles of Robust
Concurrent Computing

2

 This course introduces the principles
of robust and concurrent computing…

3

 Certain things are incorrect and it is
important to understand why
(at least what correctness means)

 Certain things are impossible and its
important to understand why
(at least to not try)

4

Major chip manufacturers have recently
announced a major paradigm shift:

New York Times, 8 May 2004:
Intel … [has] decided to focus its development efforts
on «dual core» processors … with two engines instead of
one, allowing for greater efficiency because the
processor workload is essentially shared.

5

 Multiple processors
 vs
 Faster processors

6

 The clock speed of a processor cannot
be increased without overheating

But

 More and more processors can fit in
the same space

7

Clock speed
flattening

sharply

Transistor
count still

rising

8

  Dual-core commonplace in laptops

  Quad-core in desktops

  Dual quad-core in servers

  All major chip manufacturers produce

 multicore CPUs

   SUN Niagara (8 cores, 32 threads)

   Intel Xeon (4 cores)

   AMD Opteron (4 cores)

9

L1 cache

L2 cache

L3 cache
(shared)

10

11

  Multiple hardware processors, each executes a
 series of processes (software constructs)
 modeling sequential programs

  Multicore architecture: multiple processors are
 placed on the same chip

12

  Two fundamental components that fall apart:
 processors and memory

  The Interconnect links the processors with the
 memory:

   - SMP (symmetric): bus (a tiny Ethernet)

   - NUMA (network): point-to-point network

13

  The basic unit of time is the cycle: time to
 execute an instruction

  This changes with technology but the relative
 cost of instructions (local vs memory) does
 not

14

Simple view

15

16

  The basic unit of communication is the read
 and write to the memory (through the cache)

  More sophisticated objects are sometimes
 provides and, as we will see, necessary: C&S,
 T&S, LL/SC

17

  Cannot rely on CPUs getting faster in
 every generation

  Utilizing more than one CPU core
 requires concurrency

18

  One of the biggest future software
 challenges: exploiting concurrency

   Every programmer will have to deal with it

   Concurrent programming is hard to get

 right

19

1x
2x

4x

Time: Moore’s Law

Speedup

User code

Traditional CPU

20

Speedup

1x
2x

4x

User code

Multicore CPU

Time: Moore’s Law

Unfortunately not so simple…

21

Speedup

1x
1.4x

2.2x

User code

Multicore CPU

Time: Moore’s Law

Parallelization & synchronization
 require great care!

22

  Forking processes is easy

 But…

  Synchronizing accesses to shared objects is
hard

23

The key: shared objects

24

public class Counter

private long value;

public Counter(int i) { value = i;}

public long getAndIncrement()
{
return value++;
}

Counter

25

 How to synchronize?

Shared object

Concurrent processes

26

Locked object

One process at a time

Locking (mutual exclusion)

27

Locking with compare&swap()

  A Compare&Swap object maintains a value x, init
 to ⊥, and y;

  It provides one operation: c&s(v,w);

 Sequential spec:
●  c&s(old,new)
{y := x; if x = old then x := new; return(y)}

28

lock() {
repeat until
unlocked = this.c&s(unlocked,locked)
}

unlock() {
 this.c&s(locked,unlocked)
 }

Locking with compare&swap()

29

Locking with test&set()

  A test&set object maintains binary values x, init
 to 0, and y;

  It provides one operation: t&s()

 Sequential spec:
  t&s() {y := x; x: = 1; return(y);}

30

lock() {
repeat until (0 = this.t&s());
}

unlock() {
 this.setState(0);
 }

Locking with test&set()

31

lock() {
while (true)
 {
 repeat until (0 = this.getState());
 if 0 = (this.t&s()) return(true);
 }
}

unlock() {
 this.setState(0);
 }

Locking with test&set()

32

 Lock l = ...;
 l.lock();
 try {
// access the resource protected by this lock
 } finally {
 l.unlock();
 }

Explicit use of a lock

33

public class SynchronizedCounter {
 private int c = 0;
 public synchronized void increment() {
 c++;
 }
 public synchronized void getAndincrement()
 {
 c++; return c;
 }
 public synchronized int value() {
 return c;
 }
}

Implicit use of a lock

34

Problems with locks

  50% of the bugs reported in Java come
from the mis-use of « synchronized »

35

Concurrency conflicts are time
-sensitive
They might never be detected
 before application deployment

36

Locks are fragile

  Blocking

  Non-composable

37

Locks are blocking

   A process holding a lock prevents all
others from progressing: deadlock,
livelock, priority inversion, etc.

38

Processes are asynchronous

  Page faults

  Pre-emptions

  Failures

  Cache misses, …

39

Processes are asynchronous

  A cache miss can delay a process by ten
instructions

  A page fault by few millions

  An os preemption by hundreds of

millions…

40

From the Linux kernel

/* * When a locked buffer is visible
 to the I/O layer * BH_Launder is
 set. This means before unlocking *
 we must clear BH_Launder,mb on alpha
 and then * clear BH_Lock, so no
 reader can see BH_Launder set * on
 an unlocked buffer and then risk to
 deadlock. */

41

Coarse grained locks => slow

Fine grained locks => errors

42

Double-ended queue

Enqueue Dequeue

43

Fine-grained locking

   It took two years for the Java Standards
Committee to approve for inclusion in
Java 5 class libraries a fine-grained
locking-based implementation of a
hash-table

  The implementation was devised by
The Java concurrency expert

44

Locks are fragile

  Blocking

  Non-composable

45

Locks do not compose

Dequeue

Enqueue

46

Alternative to locking?

47

Wait-free computing

  Wait-freedom: every process that
invokes an operation eventually returns
from the invocation … unlike locking.

  Atomicity: every operation appears to
execute instantaneously … as if the
shared object was locked.

48

 This course presents the principles of
wait-free computing…

