
Peer to peer systems and

applications

Anne-Marie Kermarrec
INRIA Rennes, France
ASAP group
(As Scalable As Possible)

June 2010

Roadmap

1. Introduction

2. Structured P2P systems

3. Application-level multicast over structured

P2P networks

4. Epidemic-based peer to peer systems and
applications

2

The road to P2P systems

June 2010

Scaling Techniques

Scalability: ability to increase performance (or not to decrease) as
the scale increases

Distribution: partitioning of data and computation across multiple
machines

Decentralized naming service (DNS)

Decentralized information systems (WWW)

Replication: make copies available at multiples machines

Replicated file.Web servers

Replicated databases

Caches: allow client to access local copies

Web caches (browser/proxy)

File caching

Distributed shared memory systems

4

June 2010

Context

Distributed systems are evolving

Large-scale distributed systems

Number of machines, geographical spreading and data volume

Dynamic behaviour

Mobility, volatility, connectivity

Traditional algorithms are no longer efficient

Peer to peer communication paradigm fills this gap

Fully decentralized

Self-organizing/enhanced availability

Symmetric peers/load balancing

Local knowledge of the system/global convergence

5

June 2010

Peer-to-Peer Systems

6

June 2010

Historical perspective

1970s - 1980s: Birth of the Internet

Limited reach of the Internet

Email, FTP, Telnet

Share documents and resources between research centers

Central committee to organize and maintain it

1990s

Tremendous expansion & diffusion

Killer apps: WWW and e-Commerce

Client/Server model

Late 1990s - today

P2P: An alternative to Client/Server

Passive clients active peers

End-computers play a role, contribute, interact

7

June 2010

Internet Traffic

8

June 2010

What makes P2P interesting?

End-nodes are promoted to active
components

 (previously they were just clients)

Nodes participate, interact, contribute to the
services they use.

Harness huge pools of resources accumulated
in millions of end-nodes.

Irregularities and dynamicity are treated as
the norm

9

June 2010

Peer to peer applications

Deployed application (60-70% of Internet
Traffic)

Archival systems

RW file sharing applications

Application-level multicast

Streaming content protocols

Publish-subscribe systems (RSS)

Grid Computing

Telco applications

10

June 2010

The core: Overlay Networks

Physical Network

Overlay Network

11

June 2010

Overlay types

Structured P2P Unstructured P2P

Topology strictly determined by node IDs

Any two nodes can establish a link

Topology evolves at random

Topology reflects desired properties of
linked nodes

12

June 2010

Main Issues in P2P: Self organization

Avoid central server: No one keeps full state:
nodes take local decisions

Distribute load on multiple peers

Limit load per peer

Let emerge global operation from local
decisions

Self-Management
Self-Healing
Self-Configuration
Self-*

13

June 2010

What I won’t talk about

Security

Privacy

Incentives

Byzantine failures

14

Structured P2P overlay networks

June 2010 16

P2P routing infrastructure

Overlay: network abstraction on top of IP

Basic functionality: distributed hash table
CAN relies on a multidimensional cartesian space

Chord, Pastry, Tapestry: generalized hypercube routing
based on prefix matching

Exact-match interface

Applications
Content-delivery networks

Storage systems, Caching

Naming services

Multicast

June 2010 17

Distributed Hash Table (DHT)

k6,v6

k1,v1

k5,v5

k2,v2

k4,v4

k3,v3

containers

Operations:

insert(k,v)

lookup(k,v)

Table of

containers

• Store <key,value> pairs

• Efficient access to a value given a key

• Mapping key-value ensured by the table of containers

June 2010 18

Distributed Hash Table

k6,v6

k1,v1

k5,v5

k2,v2

k4,v4

k3,v3

nodes

Operations:

send(m,k)
P2P

overlay

network

• Message sent to keys: implementation of a DHT

• P2P Infrastructure ensures mapping between keys and physical nodes

• Fully decentralized: peer to peer communication paradigm

June 2010 19

Mapping

Identifier Space

key nodeId

•An identifier is associated to each node (nodeId)

•Large identifier space (keys and nodeId)

•A node is responsible for closest key to its nodeId

June 2010 20

Sending messages to keys

keys nodeId

source

destination

• Each node maintains a routing table (nodeid, IP adress)

• At each routing hop, the message gets closest to the key

• Infrastructure P2P: mapping between key and node

June 2010 21

Distributed Hash Table

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V

K V (K1,V1)

retrieve (K1)
insert
(K1,V1)

June 2010 22

Pastry (MSR/RICE)

node key Id space

NodeId = 128 bits

Nodes and key place in a linear space (ring)

Mapping : a key is associated to the node with the numerically

closest nodeId to the key

June 2010 23

Pastry

Naming space :
Ring of 128 bit integers

nodeIds chosen at random

Key/node mapping

 key associated to the node with the numerically closest node id

Routing table:
Identifiers are a set of digits in base 16
Matrix of 128/4 lines et 16 columns
routeTable(i,j):

 nodeId matching the current node identifier up to level I
 with the next digit is j

Leaf set
8 or 16 closest numerical neighbours in the naming space

June 2010 24

Pastry: Routing table(#65a1fcx)

log16 N

liges

Line 0

Line 1

Line 2

Line 3

June 2010 25

Pastry: Routing

Properties
log16 N hops

Size of the state
maintained (routing
table): O(log N)
Leaf set

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4

d471f1 Leafset

June 2010 26

Routing algorithm, notations

June 2010 27

Routing algorithm (on node A)

June 2010 28

Node departure

Explicit departure or failure

Replacement of a node

The leafset of the closest node in the

leafset contains the closest new node, not

yet in the leafset

Update from the leafset information

Update the application

June 2010 29

Failure detection

Detected when immediate neighbours in

the name space (leafset) can no longer
communicate

Detected when a contact fails during the

routing

 Routing uses an alternative route

June 2010 30

Fixing the routing table of A

Repair

June 2010 31

State maintenance

Leaf set

is aggressively monitored and fixed

Routing table

 is lazily repaired, when a hole is detected

during the routing

periodic gossip-based maintenance

June 2010 32

Reducing latency

Random assignment

of nodeId: Nodes

numerically close are

geographically

(topologically) distant

Objective: fill the

routing table with nodes

so that routing hops are

as short (latency wise)

as possible

Topological Metric:

latency

d467c4

d467f5

6fdacd

June 2010 33

Exploiting locality in Pastry

Neighbour selected based of a network proximity

metric:

Closest topological node

Satisfying the constraints of the routing table

routeTable(i,j):

 nodeId corresponding to the current nodeId courant up
to level i

 next digit = j

nodes are close at the top level of the routing table

random nodes at the bottom levels of the routing tables

June 2010 34

Proximity routing in Pastry

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

Naming space

d467c4

65a1fc

d13da3

d4213f

d462ba

Topological space

Leaf set

June 2010 35

Locality

Node X routes to node A
Path A,B,… -> Z

Z numerically closest to X
Initialisation of the line i of the routing table with the contents of line
i of the routing table of the ith node encountered on the path

Improving the quality of the routing table
X asks to each node of its routing table its own routing state and
compare distances

Gossip-based update for each line (20mn)

June 2010 36

Node insertion in Pastry

d467c4

65a1fc

d13da3

d4213f

d462ba

Topological space

New node: d46a1c

d46a1c

Route(d46a1c)

d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

Naming space

June 2010 37

Performance 1.59 slower than IP on average

Content Adressable network

(CAN)

June 2010 39

Content Adressable Network -CAN

UCB/ICIR
Virtual coordinates Cartesian space
The space is shared between peers

Each node is responsible for a part of the space
(zone)

Abstraction
CAN enables to store data at a given point in the
space
CAN enable the routing from a point of the space
to the other (DHT functionality)
A point is associated to the node owning the zone
in which the point lies

June 2010 40

Space organisation in CAN

node Key Name space

D-dimension space

Routing: progression within the space towards

The destination

June 2010 41

CAN: Example

June 2010 42

CAN: exemple

June 2010 43

CAN: routing

(a,b)

(x,y)

(1) a = hx(K)
 b = hy(K)

y = b

node X ::insert(K,V)

x = a

 (2) route(K,V) -> (a,b)

 (3) (a,b) stores (K,V)

June 2010 44

CAN: node insertion

(x,y)

(1) Bootstrap : discovery

of a contact node

already participating

to the CAN overlay

network

(2) Selection of a random

point (p,q) in the

space

(3) Routing to (p,q) and

discovery of node Y

(4) Zone splitting between

Y and N

(p,q)

Y

N

Insertion affects only Y and its immediate neighbours

June 2010 45

Routing information

The joining node gets the IP @ of its
neighbours from the previous owner of the
zone

Set of neighbours of the joining node is a
sub-set of neighbours of the previous owner

The previous owner updates its own list of
neighbours

The neighbours of the joining node should
also be updated

June 2010 46

Departure, arrival, maintenance

Node departure
The leaving node L must make sure that
the zone is taken over

A leaving node hands over explicitly its
own zone (and associated database) to
one of its neighbours

Failure: detected by periodic messages
from a node to its neighbours (hearteat)
containing its own coordinates and
coordinates of its neighbours

June 2010 47

CAN: properties

Each node maintains pointers to its
immediate neighbours = 2d O(d)
Routing in a N node network

Number of hops in a d-dimension space
In case of failure: selection of an alternative
neighbour

Optimizations
Multiple dimensions
Multiple reality
RTT Measures
Zone splitting
Locality awareness: landmarks

June 2010 48

Failure resilience

destination

source

June 2010 49

Failure resilience

June 2010 50

Failure resilience

destination

June 2010 51

Failure resilience

June 2010 52

Routing resilience

June 2010 53

Node X::route(D)

 If (X cannot progress directly towards D)

Check if one neighbour can progress towards the
destination

If so, forward the message

Failure resilience

June 2010 54

Multiple dimensions

Increasing the number of dimensions

The average path length is improved

The number of neighbours increases
linearly with the dimension

Enhanced availability: potentially more
nodes available

June 2010 55

Reality

Multiple independent coordinate spaces
Each node is associated to a different zone
in each space (reality): r sets of
coordinates
Enhanced availability

DHT content can be replicated across realities

Ex: a pointer to a file stored at (x,y,z) is
stored on three nodes responsible of point
(x,y,z) in 3 realities

Improves average path length as well: depending
on the destination, the most relevant reality is
chosen

June 2010 56

RTT measures

So far, the metric used to progress in the
space in the path length in the Cartesian
space

Better criterion to take into account the
underlying topology

RTT to each neighbour

Message forwarded to the neighbour for
which the ratio progress/RTT is the best

Avoid long hops

June 2010 57

Summary on structured overlay networks

Chord, Pastry and Tapestry use a generalized
hypercube routing: prefix matching

State maintained: O(Log(N))
Number of routing hops: O(Log(N))
Proximity routing in Pastry and Tapestry

CAN uses progression in a multidimensional
Cartesian space

State maintained: O(D)
Number of routing hops: O(N1/D)
Proximity routing more difficult to exploit

DHT Functionality=Exact match interface

June 2010 58

References

A. Rowstron and P. Druschel, "Pastry: Scalable, distributed

object location and routing for large-scale peer-to-peer
systems", Middleware'2001, Germany, November 2001.

Scalable Content-Addressable Network (SIGCOMM
2001) Sylvia Ratnasamy Paul Francis Mark Handley Richard
Karp Scott Shenker

Many more: Google P2P structured overlay networks

Application level multicast

June 2010 60

Group Communication

Common and useful communication
paradigm
Disseminating information within a group
sharing interest

Consistency of replicated data
Publish/Subscribe systems

Studied a lot in local area networks
Group management (join, leave, send)

More scalability needed
Application-level multicast (for medium-size
groups) not scalable
Network-level multicast not fully deployed

June 2010 61

Group communication

Important functionality
of distributed systems

Failure detection

Membership management
Coherence management

Event notification systems

Scalability
Group size
Geographical spreading

June 2010 62

Broadcast protocols

Centralized versus
decentralized protocols

Load balancing

Performance

Evaluation metrics

Delay from the source

to the destination

Network traffic

Node load

Failure resilience

B

C

E

F

D

A

G

B

C

E

F

D

A

G

June 2010 63

Application-level multicast (ALM)

1. Structured peer to peer networks

Flooding

Tree-based

2. Large Content dissemination

June 2010 64

Structured overlay networks

Scalability

 O(logN) hops routing with a O(logN) state

Load balancing

Self-* properties (organizing, healing, …)

P2P overlay network automatically repaired upon

peer joins and departures

Automatic load re-distribution

 Attractive support for large-scale
application-level multicast

June 2010 65

ALM on structured overlay networks

Overlay network used for group naming and
group localization

Flooding-based multicast [CAN multicast]:

Creation of a specific network for each group

Message flooded along the overlay links

Tree-based multicast [Bayeux, Scribe]

Creation of a tree per group

Flooding along the tree branches

June 2010 66

Flooding-based multicast

Group members join the network associated
to a given group

Messages sent over all links of the P2P
overlay

Specific mechanism to get rid of duplications

Example : message m in Pastry
on receiving <flood, m, i>

for each routing table row i’ (i’ greater than i)

send <flood, m, i’> to nodes in row
i=0 for original message sender

June 2010 67

Tree-based multicast

Creation of a tree per group

The tree root is the peer hosting the key associated
to that group

The tree is formed as the union of routes from every
member to the root

id space

June 2010 68

Scribe

Support multiple groups on a p2p prefix-
matching infrastructure (Pastry, Tapestry,…)
Support various applications (size-wise) on
a single infrastructure potentially

Instant Messaging
Information dissemination (stock alerts)
Diffusion lists (Windows updates)

Properties
Scalability
Efficient: low latency, low network link stress,
low node load
Reliability: application-specific

June 2010 69

Scribe

TCP/IP Internet

 SCRIBE
Broadcast protocol

Membership management

PASTRY
P2P Infrastructure

June 2010 70

Scribe: design

Goals

Group creation

Membership maintenance

Messages dissemination within a group

Construction of a multicast tree on top
of a Pastry-like infrastructure

Reverse path forwarding

Messages flooded along the tree branches

June 2010 71

Scribe Interface

Create(group)

Join(group)

Leave(group)

Multicast(group,m)

 The P2P infrastructure is used for
group creation and join protocol

June 2010 72

Scribe: group creation

Each group is assigned an

identifier groupId =
Hash(name)

Multicast tree root : node
which nodeId is the
numerically closest to the

groupId

Create(group): P2P
routing using the groupeId

as the key

#G

Create(#G)

Root

June 2010 73

Scribe: tree creation

join(group) : message sent through
Pastry using groupeId as the key

Multicast tree : union of Pastry
routes from the root to each group

Low latency: leverage Pastry proximity
routing

Low network link stress: most packets
are replicated low in the tree

June 2010 74

Scribe : join(group)

1100

1101

1011

0100 0111

1011

1111

1100

0111

0100

1000

1111

1000

1101

1001

1011

June 2010 75

Scribe: message dissemination

Multicast(group, m)

Routing through
Pastry to the root
key=groupeId

Flooding along the
tree branches from

the root to the leaves

1100

1101

1011

0100 0111

1011

E

June 2010 76

Reliability

« best effort » reliability guarantee

Tree maintenance when failures are detected

Stronger guarantee may also be implemented

Node failure

Parents periodically send heartbeat messages to

their descendants in the tree

When such messages are missed, nodes join the
group again

Local reconfiguration

Pastry routes around failures

June 2010 77

Tree maintenance

1100

1101

1011

0100 0111

1011

1000

1001

1111

Root

June 2010 78

Tree maintenance

1100

1101

0100 0111

1011

1000

1001

1111

Faulty root New root

June 2010 79

Load balancing

Specific algorithm to limit the load on
each node

Size of forwarding tables

Specific algorithm to remove the
forwarders-only peers from the tree

small-size groups

June 2010 80

Scribe performance

Discrete event simulator

Evaluation metrics
Relative delay penalty

RMD: max delayapp-mcast / max delayip-mcast

RAD: avg delayapp-mcast / avg delayip-mcast

Stress on each network link

Load on each node
Number of entries in the routing table

Number of entries in the forwarding tables

 Experimental set-up
Georgia Tech Transit-stub model (5050 core routers)
100 000 nodes chosen at random among 500 000

Zipf distribution for 1500 groups
Bandwidth not modeled

June 2010 81

Group distribution

Instant

Messaging

Windows

Update

Stock

Alert

June 2010 82

Delay/IP

0

300

600

900

1200

1500

0 1 2 3 4 5
Delay penalty

C
D

F
 o

f
G

ro
u

p
s

RMD

RAD

Mean = 1.81

Median =1.65

June 2010 83

Load balancing

0

5000

10000

15000

20000

25000

0 5 10 15 20 25 30 35 40
Number of forwarding tables

N
u

m
b

e
r

o
f

n
o

d
e
s

June 2010 84

Load balancing

0

5000

10000

15000

20000

0 100 200 300 400 500 600 700 800 900 1000 1100

Total number of entries in forwarding tables

N
u

m
b

e
r

o
f

n
o

d
e
s

June 2010 85

Network load

0

5000

10000

15000

20000

25000

30000

1 10 100 1000 10000
Stress

N
u

m
b

e
r

o
f

n
e

tw
o

rk
 l
in

k
s

Scribe

IP Multicast

Maximum

June 2010 86

Summary

Generic P2P infrastructures

Good support for large-scale distributed
applications

ALM Infrastructure

Scribe exhibits good performances/IP
multicast

Large size groups

Large number of groups

Good load-balancing properties

June 2010 87

CAN Multicast

 Flooding in a CAN network

Either

All CAN members are group members

Or

Mini CAN overlay creation/groupe

June 2010 88

CAN multicast: group formation

Subset of CAN network members
forms a mini-CAN

Group identifier associated to a point
(x,y) in the CAN space.

(x,y) is the bootstrap node for the
mini-CAN

Group join = mini-CAN join

Iterations on the CAN join protocol

June 2010 89

CAN multicast : message diffusion

CAN network of dimension d: 1….d
Each node maintains at least 2d neighbours
Diffusion

Source node sends the message to all its neighbours
A node receiving a message from dimension i

Forwards the message to its neighbours along the
dimensions 1…(i-1)
Forwards the message to neighbours of dimension i in
in the opposite direction (from the one it receives the
message)

A node does not forward the message along a given
dimension if the message has already traversed half of
that dimension
A node does not forward an already received message

June 2010 90

Example

June 2010 91

Can multicast : Performance

CAN: 6 dimensions, group of 8192
nodes, transit-stub topology

Relative delay penalty (RDP)

5-6 for the majority of group members

More details in the comparison

June 2010 92

Comparison: delay penalty/IP

June 2010 93

Comparison: average (physical) link stress

link stress for joining:

• identical for trees

• much larger for flooding

• example: 281 on CAN

June 2010 94

Trees versus flooding

Tree-based multicast is more efficient

Lower delay and network stress during
the multicast

Huge difference in the network trafic
during group creation

Main drawback: some peers may be
forwarders-only

June 2010 95

Large-scale broadcast/multicast

Application-level multicast (ALM)

1. Structured peer to peer networks

Flooding

Tree-based

2. Content streaming

SplitStream

June 2010 96

 P2P ALM

Tree-based protocols

Load unbalance: majority of nodes are leaves

Internal node failures

Epidemic-based protocol

Redundancy by default

Potentially high network traffic

The drawbacks are even more important
when it comes to intensive contents

Load balancing

Network load

June 2010 97

SplitStream approach

Content divided in stripes

Each stripe is distributed on an independent tree

Load balancing

Internal nodes in one tree are leaves in others

Reliability

Failure of one load leads to unavailability of x stripes if
parents are independent and using appropriate coding
protocols

[SOSP 2003 « SplitStream: High-Bandwidth Multicast in
Cooperative Environment »]

June 2010 98

Tree-based ALM

June 2010 99

Tree-based ALM: unbalance

B

C

E

F

D

A

G

IN: n kb/sec

OUT: 2n kb/sec

June 2010 100

The SplitStream forest

B

C

E

F

D

A

G

June 2010 101

The SplitStream forest

B

C

E

F

D

A

G

June 2010 102

The SplitStream forest

B

C

E

F

D

A

G

June 2010 103

The SplitStream forest

B

C

E

F

D

A

G D

E G

B A F C

A

B C

F G D E

N kb/sec

N/2 kb/sec N/2 kb/sec

June 2010 104

SplitStream

Construction of one tree/group per data stripe

Each stripe identifier starts with a different
digit (independence up to 16 stripes)

0x 1x fx

…..

June 2010 105

SplitStream

Main issue: build and maintain multiple multicast tree in
a fully decentralized and reliable way so that

Each client receives the desired number of stripes
Independent trees
Control upon bandwidth allocation
Reasonable latency and network load

Leverage Scribe/Pastry
Pastry: P2P routing infrastructure (structured, efficient,
reliable)

Scribe: decentralized and efficient tree-based protocol

June 2010 106

SplitStream: forest managements

Constraints
Limited out-degree potentially increases the tree depth
Load balancing to ensure within trees and between
trees
Failure independence of trees .

Solution: spare capacity tree
Overloaded nodes push descendents down (Scribe)
Underloaded nodes join the spare capacity tree
Overloaded nodes give up descendents
Orphans anycast to the spare capacity tree to discover
new parents

June 2010 107

A

D

F G

C

E

Anycast

For stripe 6

{0,3,A}

Cap: 2
{1,..,F}

Cap: 4

Adopting

• Loop checking
• Descendants switching

Spare capacity tree

June 2010 108

Experiments

Simulations (average on 10 runs)
Topologies GT, Mercator, MS Corp.
40000 nodes

Pastry (b=4, leafset = 16)

SplitStream : 16 stripes
Configurations in-degree x out-degree

Impact of spare capacity 16x16, 16x18, 16x32 and 16xNB
Impact of capacity/needs (Gnutella)

Failure resilience
Path diversity
Catastrophic failures (25% of faulty nodes) in a 10,000 node system

Results
Forest construction
Multicast performance

June 2010 109

Forest construction: load on each node

June 2010 110

Forest construction: load on each node

Configuration 16x16 16x18 16x32 16xNB

Max 2971 1089 663 472

Mean 57.2 52.6 35.3 16.9

Med 49.9 47.4 30.9 12

Load decreases as the spare capacity increases

16xNB: no pushdown nor orphans
•16x16: each node contacts the spare capacity tree for 8 stripes on average

• Nodes with id close to the spare capacity tree get the highest load

June 2010 111

Forest construction: network load

Configuration 16x16 16x18 16x32 16xNB

Max 5893 4285 2876 1804

Mean 74.1 65.2 43.6 21.2

Med 52.6 48.8 30.8 17

Load decreases as the spare capacity increases

Maximum approx. 7 times < centralized system

Measured as the number of msg on physical links

June 2010 112

Multicast: link stress

Configuration Centralized

(0.43)

Scrib

e

(0.4
7)

IP

(0.43)

 16x16

(0.98)

16x18 16x32 16xN

B

Max 639984 3990 16 1411 1124 886 1616

Mean 128.9 39.6 16 20 19 19 20

Med 16 16 16 16 16 16 16

One message/stripe, no failure

•16xNB : absence of forwarding bounds causes contention on a small

•Set of links
•Splitstream uses a larger fraction of links but load them less

June 2010 113

Delay penalty during multicast

0

2

4

6

8

10

12

14

16

0 0,5 1 1,5 2 2,5

Delay penalty

C
u
m

u
la

ti
v
e
 s

tr
ip

e
s

RAD (16 x NB)

RAD (16 x 32)

RAD (16 x 18)

RAD (16 x 16)

June 2010 114

Path diversity

Configuration 16x16 16x32 16xNB

Max 6.8 6.6 1

Mean 2.1 1.7 1

Med 2 2 1

•Number of lost stripes (at most) on each node when the most significant ancestor

is faulty (worst case scenario)

June 2010 115

Summary

SplitStream: robust and efficient
protocol for large-scale content
streaming

Forest of independent trees / unique tree

Spare capacity tree for maintenance

Decentralized and scalable management
relying on Scribe and Pastry

Robust in dynamic environments

June 2010 116

References

M. Castro, P. Druschel, A-M. Kermarrec and A. Rowstron, "SCRIBE: A large-scale and
decentralised application-level multicast infrastructure", IEEE Journal on Selected Areas in
Communication (JSAC), Vol. 20, No, 8, October 2002.

M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Rowstron and A. Singh, "SplitStream:
High-bandwidth multicast in a cooperative environment", SOSP'03, Lake Bolton, New York,
October, 2003.

M. Castro, M. B. Jones, A-M. Kermarrec, A. Rowstron, M. Theimer, H. Wang and A. Wolman,
"An Evaluation of Scalable Application-level Multicast Built Using Peer-to-peer overlays",
Infocom 2003, San Francisco, CA, April, 2003.
Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy Katz John Kubiatowicz
« Bayeux: An Architecture for Scalable and Fault-tolerant Wide-area Data
Dissemination »Eleventh International Workshop on Network and Operating Systems
Support for Digital Audio and Video (NOSSDAV 2001)
Sylvia Ratnasamy, Mark Handley, Richard Karp, Scott Shenker « Application-level Multicast
using Content-Addressable Networks » (2001) Lecture Notes in Computer Science, NGC
2001 London.

D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. « Bullet: High bandwidth data
dissemination using an overlay mesh ». In 19th ACM Symposium on Operating Systems
Principles, October 2003.
Suman Banerjee, Christopher Kommareddy, Koushik Kar, Bobby Bhattacharjee, Samir
Khuller « Construction of an Efficient Overlay Multicast Infrastructure for Real-Time
Applications » (INFOCOM 2003)

