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Roadmap 

1. Introduction  

2. Structured P2P systems  

3. Application-level multicast over structured 

P2P networks  

4. Epidemic-based peer to peer systems and 
applications  
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Scaling Techniques 

Scalability: ability to increase performance (or not to decrease) as 
the scale increases 

Distribution: partitioning of data and computation across multiple 
machines  

Decentralized naming service (DNS) 

Decentralized information systems  (WWW) 

Replication:  make copies available at multiples machines 

Replicated file.Web servers 

Replicated databases 

Caches: allow client to access local copies  

Web caches (browser/proxy) 

File caching  

Distributed shared memory systems 
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Context 

Distributed systems are evolving   

Large-scale distributed systems 

Number of machines, geographical spreading and data volume 

Dynamic behaviour 

Mobility, volatility, connectivity 

Traditional algorithms are no longer efficient 

Peer to peer communication paradigm fills this gap 

Fully decentralized 

Self-organizing/enhanced availability 

Symmetric peers/load balancing  

Local knowledge of the system/global convergence 
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Peer-to-Peer Systems 
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Historical perspective 

1970s - 1980s: Birth of the Internet 

Limited reach of the Internet 

Email, FTP, Telnet 

Share documents and resources between research centers 

Central committee to organize and maintain it 

1990s 

Tremendous expansion & diffusion 

Killer apps: WWW and e-Commerce 

Client/Server model 

Late 1990s - today 

P2P: An alternative to Client/Server 

Passive clients  active peers 

End-computers play a role, contribute, interact 
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Internet Traffic 
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What makes P2P interesting? 

End-nodes are promoted to active 
components 

 (previously they were just clients) 

Nodes participate, interact, contribute to the 
services they use. 

Harness huge pools of resources accumulated 
in millions of end-nodes. 

Irregularities and dynamicity are treated as 
the norm 
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Peer to peer applications 

Deployed application (60-70% of Internet 
Traffic) 

Archival systems 

RW file sharing applications 

Application-level multicast 

Streaming content protocols 

Publish-subscribe systems (RSS) 

Grid Computing 

Telco applications 
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The core: Overlay Networks 

Physical Network 

Overlay Network 
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Overlay types 

Structured P2P Unstructured P2P 

Topology strictly determined by node IDs 

Any two nodes can establish a link 

Topology evolves at random 

Topology reflects desired properties of 
linked nodes 
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Main Issues in P2P: Self organization 

Avoid central server: No one keeps full state: 
nodes take local decisions 

Distribute load on multiple peers 

Limit load per peer 

Let emerge global operation from local 
decisions 

Self-Management 
Self-Healing 
Self-Configuration 
Self-* 
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What I won’t talk about 

Security 

Privacy 

Incentives 

Byzantine failures 
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Structured P2P overlay networks 
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P2P routing infrastructure 

Overlay: network abstraction on top of IP  

Basic functionality: distributed hash table  
CAN  relies on  a multidimensional cartesian space  

Chord, Pastry, Tapestry: generalized hypercube routing 
based on prefix matching   

Exact-match interface  

Applications  
Content-delivery networks 

Storage systems, Caching 

Naming services 

Multicast 
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Distributed Hash Table (DHT) 

k6,v6 

k1,v1 

k5,v5 

k2,v2 

k4,v4 

k3,v3 

containers 

Operations: 

insert(k,v) 

lookup(k,v) 

Table of  

containers 

• Store <key,value> pairs 

•  Efficient access to a value given a key  

•  Mapping key-value ensured by the table of containers  
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Distributed Hash Table 

k6,v6 

k1,v1 

k5,v5 

k2,v2 

k4,v4 

k3,v3 

nodes 

Operations: 

send(m,k) 
P2P 

overlay 

network 

• Message sent to keys: implementation of a DHT  

• P2P Infrastructure ensures mapping between keys and physical nodes   

• Fully decentralized: peer to peer communication paradigm 
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Mapping 

Identifier Space 

key nodeId 

•An identifier is associated to each node (nodeId)  

•Large identifier space (keys and nodeId)   

•A node is responsible for closest key to its nodeId  
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Sending messages to keys   

keys nodeId 

source 

destination  

• Each node maintains a routing table (nodeid,  IP adress) 

• At each routing hop, the message gets closest to the key 

• Infrastructure P2P: mapping between key and node 
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Distributed Hash Table 

K  V 

K  V 

K  V 

K  V 

K  V 

K  V 

K  V 

K  V 

K  V 

K  V 

K  V (K1,V1) 

retrieve (K1) 
insert 
(K1,V1) 
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Pastry (MSR/RICE) 

node key Id space 

NodeId = 128 bits 

Nodes  and key place in a linear space (ring)  

Mapping : a key is associated to the node with the numerically 

closest nodeId to the key  
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Pastry  

Naming space : 
Ring of 128 bit integers   

nodeIds chosen at random 

Key/node mapping 

 key associated to the node with the numerically closest node id   

Routing table: 
Identifiers are a set of digits in base 16 
Matrix of  128/4 lines et 16 columns 
routeTable(i,j): 

 nodeId matching the current node identifier up to level I  
 with the next digit is j 

Leaf set 
8 or 16 closest numerical neighbours in the naming space 
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Pastry: Routing table(#65a1fcx) 

log16 N 

liges 

Line 0 

Line 1 

Line 2 

Line  3 
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Pastry: Routing 

Properties 
log16 N hops  

Size of the state 
maintained (routing 
table): O(log N) 
Leaf set  

d46a1c 

Route(d46a1c) 

d462ba 

d4213f 

d13da3 

65a1fc 

d467c4 

d471f1 Leafset 
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Routing algorithm, notations  
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Routing algorithm (on node A) 
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Node departure 

Explicit departure or failure  

Replacement of a node   

The leafset of the closest node in the 

leafset  contains the closest new node, not 

yet in the leafset 

Update from the leafset information  

Update the application     



June 2010 29 

Failure detection  

Detected  when immediate  neighbours in 

the name space  (leafset) can no longer 
communicate  

Detected when a contact fails during the 

routing 

      Routing uses an alternative route 
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Fixing the routing table of A 

Repair 
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State maintenance 

Leaf set  

is aggressively monitored and fixed  

Routing table 

 is lazily repaired, when a hole is detected 

during the routing  

periodic gossip-based maintenance 
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Reducing latency 

Random assignment 

of nodeId: Nodes 

numerically close are 

geographically 

(topologically) distant 

Objective: fill the 

routing table with nodes 

so that routing hops are 

as short (latency wise) 

as possible 

Topological Metric: 

latency 

d467c4 

d467f5 

6fdacd 
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Exploiting locality in Pastry 

Neighbour selected based of a network  proximity 

metric: 

Closest topological node 

Satisfying the constraints of the routing table  

routeTable(i,j): 

 nodeId  corresponding to the current  nodeId courant up 
to level i  

 next digit = j  

nodes are close at the top level of the routing table  

random nodes at the bottom levels of the routing tables  
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Proximity routing  in Pastry 

d46a1c 

Route(d46a1c) 

d462ba 

d4213f 

d13da3 

65a1fc 

d467c4 
d471f1 

Naming space 

d467c4 

65a1fc 

d13da3 

d4213f 

d462ba 

Topological space 

Leaf set 
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Locality 

Node X routes to node A 
Path A,B,…  -> Z 

Z numerically closest to X  
Initialisation of the line i of the routing table with the contents of line 
i of the routing table of the ith node encountered on the path  

Improving the quality of the routing table 
X asks to each node of its routing table its own routing state and 
compare distances  

Gossip-based update for each line  (20mn)  
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Node insertion in Pastry 

d467c4 

65a1fc 

d13da3 

d4213f 

d462ba 

Topological space 

New node: d46a1c 

d46a1c 

Route(d46a1c) 

d462ba 

d4213f 

d13da3 

65a1fc 

d467c4 
d471f1 

Naming space 
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Performance 1.59 slower than IP on average 



Content Adressable network 

(CAN) 
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Content Adressable Network -CAN 

UCB/ICIR 
Virtual coordinates Cartesian space  
The space is shared between peers  

Each node is responsible for a part of the space 
(zone)  

Abstraction 
CAN enables to store data at a given point in the 
space 
CAN enable the routing from a point of the space 
to the other (DHT functionality) 
A point is associated to  the node owning the zone 
in which the point lies  
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Space organisation in CAN  

node Key Name space 

D-dimension space 

Routing: progression within the space towards 

The destination 
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CAN: Example 
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CAN: exemple 
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CAN: routing 

(a,b) 

(x,y) 

(1)  a = hx(K) 
      b = hy(K) 

y = b 

node X ::insert(K,V) 

x = a 

  (2)  route(K,V) ->  (a,b) 

  (3)  (a,b) stores (K,V)   
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CAN: node insertion  

(x,y) 

(1) Bootstrap : discovery 

of a contact node 

already participating 

to the CAN overlay 

network 

(2) Selection of a random  

point (p,q) in the 

space 

(3) Routing to (p,q) and 

discovery  of node  Y 

(4) Zone splitting between  

Y and  N 

(p,q) 

Y 

N 

Insertion affects only Y and its immediate neighbours 
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Routing information 

The joining node gets the IP @ of its 
neighbours from the previous owner of the 
zone 

Set of neighbours of the joining node is a 
sub-set of neighbours of the previous owner 

The previous owner updates its own list of 
neighbours 

The neighbours of the joining node should 
also be updated 



June 2010 46 

Departure, arrival, maintenance 

Node departure 
The leaving node L must make sure that 
the zone is taken over 

A leaving node hands over explicitly its 
own zone (and associated database) to 
one of its neighbours 

Failure: detected by periodic messages 
from a node to its neighbours (hearteat) 
containing its own coordinates and 
coordinates of its neighbours 
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CAN: properties 

Each node maintains pointers to its 
immediate neighbours = 2d O(d) 
Routing in a N node network 

Number of hops in a d-dimension space   
In case of failure: selection of an alternative 
neighbour 

Optimizations 
Multiple dimensions 
Multiple reality 
RTT Measures 
Zone splitting 
Locality awareness: landmarks 
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Failure resilience 

destination 

source 
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Failure resilience 
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Failure resilience 

destination 
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Failure resilience 
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Routing resilience 
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Node X::route(D) 

 If (X cannot progress directly towards D)  

Check if one neighbour can progress towards the 
destination   

If so, forward the message 

Failure resilience 
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Multiple dimensions 

Increasing the number of dimensions 

The average path length is improved   

The number of neighbours increases 
linearly with the dimension 

Enhanced availability: potentially more 
nodes available 
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Reality 

Multiple independent coordinate spaces 
Each node is associated to a different zone 
in each space (reality): r  sets of 
coordinates 
Enhanced availability 

DHT content can be replicated across realities  

Ex: a pointer to a file stored at (x,y,z) is 
stored on three nodes responsible of point  
(x,y,z) in 3 realities 

Improves average path length as well: depending 
on the destination, the most relevant reality is 
chosen 
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RTT measures 

So far, the metric used  to progress in the 
space in the path length in the Cartesian 
space  

Better criterion to take into account the 
underlying topology 

RTT to each neighbour 

Message forwarded to the neighbour for 
which the ratio progress/RTT is the best  

Avoid long hops  



June 2010 57 

Summary on structured overlay networks 

Chord, Pastry and Tapestry  use a generalized 
hypercube routing: prefix matching  

State maintained: O(Log(N))  
Number of routing hops: O(Log(N))  
Proximity routing in  Pastry and Tapestry 

CAN uses progression in a multidimensional 
Cartesian space   

State maintained: O(D)  
Number of routing hops: O(N1/D)  
Proximity routing more difficult to exploit  

DHT Functionality=Exact match interface  



June 2010 58 

References 

A. Rowstron and P. Druschel, "Pastry: Scalable, distributed 

object location and routing for large-scale peer-to-peer 
systems", Middleware'2001, Germany, November 2001.  

Scalable Content-Addressable Network (SIGCOMM 
2001)  Sylvia Ratnasamy Paul Francis Mark Handley Richard 
Karp Scott Shenker 

Many more: Google P2P structured overlay networks 



Application level multicast 



June 2010 60 

Group Communication  

Common and useful communication 
paradigm  
Disseminating information within a group 
sharing interest 

Consistency of replicated data 
Publish/Subscribe systems  

Studied a lot in local area networks  
Group management (join, leave, send)  

More scalability needed 
Application-level multicast (for medium-size 
groups) not scalable  
Network-level multicast not fully deployed 
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Group communication  

Important functionality 
of distributed systems  

Failure detection  

Membership management 
Coherence management 

Event notification systems 

Scalability  
Group size 
Geographical spreading 
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Broadcast protocols 

Centralized versus 
decentralized protocols  

Load balancing 

Performance 

Evaluation metrics 

Delay from the source 

to the destination 

Network traffic 

Node load  

Failure resilience 

B 

C 

E 

F 

D 

A 

G 

B 

C 
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D 

A 
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Application-level multicast (ALM) 

1. Structured peer to peer networks 

Flooding 

Tree-based 

2. Large Content dissemination 
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Structured overlay networks  

Scalability  

 O(logN) hops routing with a O(logN) state   

Load balancing 

Self-*  properties (organizing, healing, …) 

P2P overlay network automatically repaired upon 

peer joins and departures   

Automatic load re-distribution  

 Attractive support for large-scale 
application-level multicast 
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ALM on structured overlay networks 

Overlay network used for group naming and 
group localization 

Flooding-based multicast [CAN multicast]: 

Creation of a specific network for each group 

Message flooded along the overlay links  

Tree-based multicast [Bayeux, Scribe] 

Creation of a tree per group   

Flooding along the tree branches 
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Flooding-based multicast  

Group members join the network associated 
to a given group 

Messages sent over all links of the P2P 
overlay 

Specific mechanism to get rid of duplications 

Example :  message m in Pastry 
on receiving <flood, m, i> 

for each routing table row i’ (i’ greater than i) 

send <flood, m, i’> to nodes in row 
i=0 for original message sender 
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Tree-based multicast  

Creation of a tree  per group 

The tree root is the peer hosting the key associated 
to that group  

The tree is formed as the union of routes from every 
member to the root 

id space 
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Scribe 

Support multiple groups on a p2p prefix-
matching infrastructure (Pastry, Tapestry,…) 
Support various applications (size-wise) on 
a single infrastructure potentially 

Instant Messaging 
Information dissemination (stock alerts) 
Diffusion lists (Windows updates) 

Properties 
Scalability  
Efficient:  low latency, low network link stress, 
low node load  
Reliability: application-specific  
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Scribe 

TCP/IP Internet 

 SCRIBE 
Broadcast protocol 

Membership management 

PASTRY 
P2P Infrastructure  
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Scribe: design  

Goals 

Group creation  

Membership maintenance  

Messages dissemination within a group 

Construction of a multicast tree on top 
of a Pastry-like infrastructure  

Reverse path forwarding 

Messages flooded along the tree branches  
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Scribe Interface  

Create(group) 

Join(group) 

Leave(group) 

Multicast(group,m) 

    The P2P infrastructure is used for 
group creation and join protocol  
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Scribe:  group creation  

Each group is assigned an 

identifier  groupId = 
Hash(name) 

Multicast tree root : node 
which nodeId is the 
numerically closest to the 

groupId   

Create(group): P2P 
routing using the groupeId 

as the key 

#G 

Create(#G) 

Root 
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Scribe: tree creation 

join(group) :  message sent through 
Pastry using groupeId as the key 

Multicast tree : union of Pastry  
routes  from the root to each group 

Low latency: leverage Pastry proximity 
routing 

Low network link  stress: most packets 
are replicated low in the tree 
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Scribe : join(group) 

1100 

1101 

1011 

0100 0111 

1011 

1111 

1100 

0111 

0100 

1000 

1111 

1000 

1101 

1001 

1011 
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Scribe: message dissemination  

Multicast(group, m) 

Routing through 
Pastry to the root 
key=groupeId  

Flooding along the 
tree branches from 

the root to the leaves 

1100 

1101 

1011 

0100 0111 

1011 

E 
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Reliability  

« best effort » reliability guarantee 

Tree maintenance  when failures are detected  

Stronger guarantee may also be implemented  

Node failure  

Parents periodically send heartbeat messages to 

their descendants in the tree  

When such messages are missed, nodes join the 
group again  

Local reconfiguration 

Pastry routes around failures  
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Tree maintenance  

1100 

1101 

1011 

0100 0111 

1011 

1000 

1001 

1111 

Root 
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Tree maintenance  

1100 

1101 

0100 0111 

1011 

1000 

1001 

1111 

Faulty root New root  
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Load balancing 

Specific algorithm to limit the load on 
each node  

Size of forwarding tables 

Specific algorithm to remove the 
forwarders-only peers from the tree   

small-size groups  
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Scribe performance  

Discrete event simulator  

Evaluation metrics 
Relative delay penalty 

RMD: max delayapp-mcast / max delayip-mcast 

RAD: avg delayapp-mcast / avg delayip-mcast 

Stress on each network link  

Load on each node 
Number of entries in the routing table   

Number of entries in the forwarding tables  

 Experimental set-up   
Georgia Tech Transit-stub model  (5050 core routers) 
100 000 nodes chosen at random among 500 000 

Zipf distribution for  1500 groups 
Bandwidth not modeled  
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Group distribution  

Instant 

Messaging 

Windows 

Update 

Stock  

Alert 
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Delay/IP 
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Load balancing 
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Load balancing 
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Network load 
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Summary 

Generic P2P infrastructures  

Good support for large-scale distributed 
applications  

ALM Infrastructure 

Scribe exhibits good performances/IP 
multicast 

Large size groups  

Large number of groups  

Good load-balancing properties  
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CAN Multicast 

 Flooding in a CAN network  

Either  

All CAN members are group members  

Or 

Mini CAN overlay creation/groupe 
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CAN multicast: group formation  

Subset of CAN network members 
forms a mini-CAN   

Group identifier associated to a point 
(x,y) in the CAN space. 

(x,y) is the bootstrap node for the 
mini-CAN 

Group join =  mini-CAN join   

Iterations on the CAN join protocol  
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CAN multicast : message diffusion 

CAN network of  dimension d: 1….d 
Each node maintains at least 2d neighbours 
Diffusion 

Source node sends the  message to all its neighbours  
A node receiving a message from  dimension i 

Forwards the message to its neighbours along the 
dimensions  1…(i-1) 
Forwards the message to neighbours of dimension i in 
in the opposite direction (from the one it receives the 
message) 

A node does not forward the message along a given 
dimension if the message has already traversed half of 
that dimension    
A node does not forward an already received message 
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Example 
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Can multicast : Performance 

CAN: 6 dimensions, group of 8192 
nodes, transit-stub topology 

Relative delay penalty (RDP) 

5-6  for the majority of group members 

More details in the comparison  
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Comparison: delay penalty/IP 
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Comparison: average (physical) link stress 

link stress for joining: 

• identical for trees 

• much larger for flooding 

• example: 281 on CAN 
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Trees versus flooding  

Tree-based multicast is more efficient  

Lower delay and network stress during 
the multicast 

Huge difference in the network trafic 
during group creation   

Main drawback: some peers may be 
forwarders-only  
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Large-scale broadcast/multicast 

Application-level multicast (ALM) 

1. Structured peer to peer networks 

Flooding 

Tree-based   

2. Content streaming  

SplitStream 
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 P2P ALM  

Tree-based protocols  

Load unbalance: majority of nodes are leaves  

Internal node failures  

Epidemic-based protocol 

Redundancy by  default 

Potentially high network traffic  

The drawbacks are even more important 
when it comes to intensive contents  

Load balancing 

Network load 
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SplitStream approach 

Content divided in stripes 

Each stripe is distributed on an independent tree 

Load balancing 

Internal nodes in one tree are leaves in others  

Reliability 

Failure of one load leads to unavailability of x stripes if 
parents are independent  and using appropriate coding 
protocols  

[SOSP 2003  « SplitStream: High-Bandwidth Multicast in 
Cooperative Environment »] 
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Tree-based ALM 
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Tree-based ALM: unbalance 
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OUT: 2n kb/sec 
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The SplitStream forest 

B 

C 

E 

F 

D 

A 

G 



June 2010 101 

The SplitStream forest 
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The SplitStream forest 
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The SplitStream forest 
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SplitStream 

Construction of one tree/group per data stripe 

Each stripe identifier starts with a different 
digit (independence up to 16 stripes) 

0x 1x fx 

….. 
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SplitStream 

Main issue: build and maintain multiple multicast tree in 
a fully decentralized and reliable way so that  

Each client receives the desired number of stripes 
Independent trees  
Control upon bandwidth allocation  
Reasonable latency and network load  

Leverage Scribe/Pastry 
Pastry: P2P routing infrastructure (structured, efficient, 
reliable)   

Scribe: decentralized and efficient tree-based protocol 
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SplitStream:  forest managements  

Constraints 
Limited out-degree potentially increases the tree depth  
Load balancing to ensure within trees and between 
trees 
Failure independence of trees . 

Solution: spare capacity tree  
Overloaded nodes push descendents down (Scribe) 
Underloaded nodes join the spare capacity tree  
Overloaded nodes give up descendents  
Orphans  anycast to the spare capacity tree to discover 
new parents   
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A 

D 

F G 

C 

E 

Anycast  

For stripe 6 

{0,3,A} 

Cap: 2 
{1,..,F} 

Cap: 4 

Adopting  

• Loop checking  
• Descendants switching  

Spare capacity tree  
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Experiments 

Simulations (average on 10 runs)  
Topologies  GT, Mercator, MS Corp. 
40000 nodes 

Pastry (b=4, leafset = 16) 

SplitStream : 16 stripes 
Configurations in-degree x out-degree   

Impact of spare capacity  16x16, 16x18, 16x32 and 16xNB 
Impact of capacity/needs (Gnutella)   

Failure resilience  
Path diversity  
Catastrophic failures (25% of faulty nodes) in a  10,000 node system   

Results  
Forest construction 
Multicast performance  
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Forest construction: load on each node 
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Forest construction: load on each node 

Configuration  16x16 16x18 16x32 16xNB 

Max 2971 1089 663 472 

Mean 57.2 52.6 35.3 16.9 

Med 49.9 47.4 30.9 12 

Load decreases as the spare capacity increases  

16xNB: no pushdown nor orphans 
•16x16: each node contacts the spare capacity tree for 8 stripes on average  

• Nodes with id close to the spare capacity tree get the highest load 
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Forest construction: network load  

Configuration  16x16 16x18 16x32 16xNB 

Max 5893 4285 2876 1804 

Mean 74.1 65.2 43.6 21.2 

Med 52.6 48.8 30.8 17 

Load decreases as the spare capacity increases  

Maximum  approx. 7 times < centralized system 

Measured as the number of  msg on physical links  
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Multicast: link stress 

Configuration Centralized 

(0.43) 

Scrib

e 

(0.4
7) 

IP 

(0.43) 

 16x16 

(0.98) 

16x18 16x32 16xN

B 

Max 639984 3990 16 1411 1124 886 1616 

Mean 128.9 39.6 16 20 19 19 20 

Med 16 16 16 16 16 16 16 

One message/stripe, no failure 

•16xNB : absence of forwarding bounds causes  contention on a small 

•Set of links 
•Splitstream uses a larger fraction of links but load them less 
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Delay penalty during multicast 
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Path diversity 

Configuration  16x16 16x32 16xNB 

Max 6.8 6.6 1 

Mean 2.1 1.7 1 

Med 2 2 1 

•Number of lost stripes (at most)  on each node when the most significant ancestor  

is faulty (worst case scenario) 
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Summary 

SplitStream: robust and efficient 
protocol for large-scale content 
streaming  

Forest of independent trees / unique tree 

Spare capacity tree for maintenance 

Decentralized and scalable management 
relying on Scribe and Pastry  

Robust in dynamic environments 
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