
1May 2008, UPM

Data Management in P2P systems

Bettina Kemme
McGill University
Montreal, Canada

2May 2008, UPM

Outline

Overview
Search Algorithms
Architectures

3May 2008, UPM

Architecture Basics

RM1
RM2

RM3

Client-
Distributed Server

Coordination among
servers

client
server

client
server

client
server

client
server

client
server

client
server

P2P

4May 2008, UPM

Definition of Peer-2-Peer

Complex Definition
Each node/peer is client and server at the

same time
Each peer provides content and/or

resources
Direct exchange between peers
Autonomy of peers (can join and leave at

their will)

5May 2008, UPM

Benefits and Challenges
 Data Sharing

 How it works
 Nodes store data; data distributed among many nodes
 Nodes who want data download it from nodes who have data

 Benefit
 massive resource
 Efficiency: distribution of expensive download operations

 Challenges
 Search
 How to distribute the data
 Load-balancing
 Data integration
 Availability
 Data consistency

 Many existing applications
 Music, movie and other file sharing

6May 2008, UPM

Benefits and Challenges
 Resource Sharing

 How it works
 Peers are willing to perform execution on behalf of others in

return to be able to use resources on other peers
 Benefit

 Massive resource
 Execution possibly close to where it is needed?

 Challenges
 Load-balancing
 Security
 Finding appropriate nodes

 Applications
 Seti
 For gaming?

7May 2008, UPM

Architecture

Peer to Peer

Hybrid (Napster) Pure

Unstructured
(Gnutella)

Structured
(Chord)

Super-peer
(KaZaA)

8May 2008, UPM

Architecture (II)
 Hybrid

 Some tasks via centralized component
 Other tasks decentralized between 2 peers

 Pure
 No special peers
 Each peer only knows neighbors

 Determine when joining the system (roaming for closest
neighbors)

 Set of neighbors might change during lifetime

9May 2008, UPM

Search in Hybrid P2P

Lookup Server,
Index table

Peer A

Peer B
(song A)

Peer C

Peer D

2.Return IP(B)

3. Download from B

0. Upload Song
 Names

0. Upload Song Names
0. Upload Song
 Names

1. Query
song A

Napster [Shanning, U. Northeast, Dec 98]
•Hybrid:

•Lookup centralized
•Peers provide meta-information to Lookup server
•Data exchange between peers

10May 2008, UPM

Search in Unstructured P2P

Peer A Peer B Peer C

Peer I
(song A)

Peer F

1. Query
song A {TTL>0}

2. query

Keywords:
Unstructured,
Flooding

Peer H

Peer EPeer D

Peer G

3. [File found]
Download

Gnutella [Justin Frankel, Mar 00]

11May 2008, UPM

Simple Flooding
 Flooding

 A peer sends the query to all of its neighbors
 If the neighbor has the result, it will notify the query initiator;

the query initiator can get the result directly from the neighbor.
 Else the neighbor will decrease TTL (Time To Live) and forward

the query to its neighbors as long as TTL is larger than 0.
 Note:

 Query initiator can get redundant results or no result even if
data exists in network.

 A peer may be visited more than once (As peer D in previous slide)
 Contact between query initiator and provider of data

 Initiator id is piggybacked on query or
 Information that provider has data takes reverse search path

12May 2008, UPM

Drawbacks of Flooding

Large amount of messages
Duplicate queries
Hard to choose TTL

TTL too high high load in Network
TTL too low No result found

13May 2008, UPM

Search in Unstructured P2P (II)

Peer A Peer B Peer D

Peer G

Peer E

query

Peer C

Peer F
Policy={1,3,6}

Peer B’

Peer B’’

Hop=1 Hop=3

Peer B’

Peer B’

Iterative Deepening[Yang,ICDE02]

14May 2008, UPM

Iterative Deepening
 Idea

 Search is started using flooding with small TTL.
 If no result is found, new search is started with larger TTL.
 Iterative until result is found or limit of TTL is reached

 Details
 There is a policy array indicating for each search iteration the

TTL
 In the previous example, Peer A will first visit all of its

neighbors which are 1 hop away (first number in policy array)
 If the result is found, query stops.
 Else, query will be forwarded via flooding to all peers that are

up to 3 hops away (second number in policy array).
 This process continue recursively until result is found or all

elements in policy array have been exhausted.

15May 2008, UPM

Search in Unstructured P2P (III)

Peer A Peer B Peer D

Peer G
(song A)

Peer E

query

Peer C

Peer F
Peer H

Peer I

Blindly Search

Random Walks [Lv, ICS02]

16May 2008, UPM

Blind Search
Query initiator selects only one neighbor to

send the query.
If the neighbor doesn’t have the result, it

will select one of its neighbors to send the
query.

The process will repeat until result is found
or TTL is met.

17May 2008, UPM

Search in Unstructured P2P (IV)

Peer A Peer B Peer D

Peer G

Peer E

query

Peer C

Peer F
(song A)

If file found, take the reverse path and cache file location .

Peer H

Peer I

Informed Search

Intelligent-BFS [Kalogeraki, CIKM02]
Dist. Res. Loc. Pro. [Menasce SIGMETRICS02]

18May 2008, UPM

Informed Search
 Each peer has a lookup index storing file locations

which have been searched previously.
 Lookup index neither complete nor accurate

 If a peer finds the location for a file in the index,
it will directly contact the file holder and get the
file.

 Otherwise, it uses flooding for search
 Once the file is found, the reverse path of query

path is used to inform the query initiator about
the location
 Hence, peers on the query path can update their indices

speeding up next queries
 Various other types of lookup indices for more

directed search

19May 2008, UPM

Search in Unstructured P2P (V)

Peer A Peer B Peer D

Peer G

Peer E

query

Peer C

Peer F
Peer H

Peer I

If file found, take the reverse path and replicate file.

Optimization: Replication [Lv,ICS02]

20May 2008, UPM

Add Replication

Replication Search
The difference between this and Informed

Search is that instead of caching the file
location the file will be cached along the
reversed query path.

21May 2008, UPM

Structured P2P

Chord [Stoica, ACM Tran NW 03]
Pastry [Rowstron, Middleware 2001]
Tapestry [Zhao, Berkeley 01]
CAN [Ratnasamy SIGCOMM, 01]

Distributed Hash Table (DHT)

22May 2008, UPM

Structured P2P (II)
 Two Versions

 Data items are distributed over peers according to an
algorithm
 Peers don’t choose their data items by “free will”
 Needs additional replication mechanism for availability

 Lookup information (location information) is distributed
over peers according to an algorithm

 Assignment mechanism
 Each node has a unique identifier (Hash of IP)
 Each data item (e.g. file) has a key (Hash of title, author

etc)
 Each node is responsible for storing files or location of

files that have a key that is similar to the node identifier
 Given a key, a node efficiently routes the query to the

node with a ID closet to the key.

23May 2008, UPM

Search in Structured P2P

N8

N14

N21

N32
N38

N42

N48

N51

N56
N1 Lookup(K54)

N42N8+32

N32N8+16

N21N8+8

N14N8+4

N14N8+2

N14N8+1

+1
+2

+4

+8

+16
+32

K54

Chord [Stoica, ACM TRAN NW 03]

N14N42+32

N1N42+16

N51N42+8

N48N42+4

N48N42+2

N48N42+1

Id has max of 6 bits: 2^6 = 64

24May 2008, UPM

Key Search in Structured P2P

 Consistent hashing
 Assign keys to chord nodes
 Requires load balancing such that each node

receives roughly the same number of keys
 Requires little movement of keys when nodes join

and leave the system
 Key Queries

 Structure requires query to contain the file
identifier

25May 2008, UPM

Topologies

Network spaces can have many
different shapes:
Multi-dimensional spaces (CAN, ProBe)
Ring-like spaces (Chord, Mercury, Oscar)
Tree-based spaces (Baton, P-Grid)

26May 2008, UPM

Range Queries
 Range Queries

 documents are described by several attributes
 Search by giving values for attributes (point query) or ranges

for values of attributes
 where a= 2 and b = 10
 where 10 <= a <= 20 and 1000 < b < 2000

 Two-dimensional
 each node is assigned

documents for which the
attribute values lie in a
certain range

27May 2008, UPM

Routing Range and Point Queries

keep track of the neighbors responsible
for neighbor ranges

forward queries to neighbors whose
ranges are closer to the requested

Point Query: Range Query:
Routing Flooding

28May 2008, UPM

Challenges

Joins
distribute space
more nodes -- longer routing

 leaves
make sure not to loose important

information (data, index information)
replication necessary

29May 2008, UPM

Super-Peer

Super peer

Child peer

• A super peer keeps an
index over its leaf nodes
• Super peer performs
queries on behalf of leaves

•faster routing since less
nodes

• Direct exchange between
any peer

Download
directly

search

[Yang and Garcia-Molina, ICDE 03]

30May 2008, UPM

Challenges of Super-Peer

What is good ratio of leaves to
super peer?

Search more efficient?
How should super-peers connect to

each other? Unstructured v.s
structured?

System more reliable? K-redundant

31May 2008, UPM

Super Peer, K-redundant

K=2

32May 2008, UPM

Search in P2P Comparison

FixedRandomRandomOne Central.Structure

High prob.PartialNothingdeterministicInfo.
about
Data Loc.

AnywhereAnywhereAnywhereAnywhereData Loc.

Good

Opt Flood

Int. BFS
Informed

Unstructured

Good

Flood

Gnutella
Blindly

StructuredHybridCategory

Self Org.

Search
Method

Example

BadBottleneck

DHTCentralized
Index Server

ChordNapster

33May 2008, UPM

Replication in P2P

Improves Search
Find match faster

Improves Availability
Loss of node does not lead to unavailability

of data
Improves Load Balancing

If highly demanded documents are
replicated, download processing can be
distributed among replicas

34May 2008, UPM

How to replicate
No proactive replication

Hosts store and serve only what they
requested: called owner replication
Naturally proportional replication

o A document is replicated according to its popularity

Proactive replication of meta-information
(Keys and pointers) for search efficiency
(FastTrack, DHT)

Proactive replication of copies of data-
item (for search efficiency, load-balancing
and availability)

35May 2008, UPM

Challenges in Replication

How many replicas?
When to create replicas?
Where to place replicas?
How to route queries to different

replicas?

36May 2008, UPM

Replication in P2P
 Adaptive Replication in Peer-to-Peer Systems.

Gopalakrishnan, Silaghi, Bhattacharjee,
Keleher, ICDCS 2004

 Path-replication (app-cache)
 works well for skewed query distribution
 but cannot handle load properly (nodes around hot-

spot data more heavily loaded)
 adaptive replication (LAR)

 server load should be balanced
 choose specific replication points

 similar to owner replication!
 enhance routing process with hints to find new

replicas
 works with structured and unstructured P2P

37May 2008, UPM

LAR step 1: Measure local load

 high-load and
low-load
thresholds

 keep track of
the load due to
each object

 Specify
processing
capacity and
queue length for
each server

38May 2008, UPM

LAR step 2: Make replication decision

A message: Sj -> Si
Cur(si) > high(si), Si is overloaded.

If Cur(si) - Cur(sj) > K
Si then ask Sj to create replicas of the n most

highly loaded items of Si to make the load
balanced between Si and Sj.

If Low(si) < Cur(si) < Max(si)
If Cur(si) - Cur(sj) > low(si)

then distribute

39May 2008, UPM

LAR step 3: Propagate routing hints.
 Each server maintains cache of routing hints
 A hint consists of

 a data item label,
 its home node,
 and a max. set of known replica locations
 Hint entries are replaced using LRU

 Hints are cached on the path from source to
destination

 Cache incomplete and might be stale
 Hint dissemination: piggybacked on other messages

40May 2008, UPM

Implementation over CHORD

replicated data item: Finger-list

41May 2008, UPM

Evaluation

Simulation based
1000 servers
35.000 items
server capacity: 10 per second
servers drop messages if too many

requests in queue
 load is triggered that “average” load on

server would be 25%

42May 2008, UPM

Simulation Results 1: Chord, App-Cache, LAR

 skewed query distribution starts at 100 ms

43May 2008, UPM

Simulation Results 2: Chord, App-Cache, LAR

44May 2008, UPM

Simulation Results 2: Chord, App-Cache, LAR

