
1May 2008, UPM

Replication in Multi-tier Architectures

Bettina Kemme
McGill University
Montreal, Canada

2May 2008, UPM

What is a client/server system?
 From Client perspective, there is one server
 Server provides service that can be called

Client Server

3May 2008, UPM

Multi-tier Architecture
 Server itself consists actually of several servers or

components
 each has different functionality

Application Server

Y:2

Z:3

Money
transfer

User related
Information

XX:0X:1

Web Server

Session
Info Account

 x’, y’;

Client

4May 2008, UPM

Multi-tier Architecture (contd)
 Front tier: browser, application programs, web-service clients
 Middle-tier

 Web server (WS): presentation logic
 Application Server (AS): business logic

 Backend tier (database): persistent data

Application Server

Y:2

Z:3

Client A buys X

User related
Information

X

Database

X:0X:1

Web Server

X’

Client

Session
Info

Static web-
pages

5May 2008, UPM

Multi-tier Architecture (contd.)
 Used widely in most enterprise applications.
 Central role for Web applications, especially for e-commerce.
 WS / Application Server

 Most common framework:
 J2EE 1.4 --> Java EE 5 platform

 http://www.theserverside.com compares 34 AS products
 22 have J2EE license => Java EE
 big players: BEA WebLogic, IBM WebSphere and many others
 open source: Jboss, JOnAs

 differentiation:
 scalability, high availability, ease of use, application integration,

extensions
 Application server markets are expected to reach $5.2 billion by

2009 (http://www.researchandmarkets.com/reports/c7868/)
 Database:

 Well established for a long time
 Few big players: Oracle, IBM, Microsoft SQL Server

PostgreSQL, MySQL

6May 2008, UPM

Problem

Component can become
bottleneck
single point of failure

Client
Client
Client
Client

Server

7May 2008, UPM

Clusters
 replicate component

 process and/or data

Client
Client

Client
Client

 in case of crash, failover clients to other replica

Server

Server

 distribute load over replicated components in
cluster

8May 2008, UPM

Added Complexity

Client
Client

Client
Client

Server

Server

coordination

9May 2008, UPM

Challenges

 Many physical copies should appear as one
logical copy
 Distribution / replication transparent
 Same semantics as non-replicated system

 Failure handling
 exactly once execution

 (changes appropriate data at the different tiers)
 Transparent Failover

 Online Reconfiguration
 New replicas need data

 Load-Balancing and Provisioning
 Cooperation between tiers

Replica control: keep data copies consistent

ClientsClientsClients

X:1

ClientsClientsClientsSession
Info

10May 2008, UPM

WS replication

Application ServerWeb Server

11May 2008, UPM

Replication of the WS
Service and static web-pages replicated

scalability and fault-tolerance easily achieved
 load distribution mechanisms:

Stateless: round robin, random…
Stateful:

o send next request to the least loaded server most of the time
o Cluster request types to exploit cache at web-server

Sessions

switch

client

client
dynamic web-page

generation

backup

12May 2008, UPM

Replication of the AS tier

Application ServerWeb Server

13May 2008, UPM

Data Replication
 From user perspective there is one logical

copy of each data item
 Users submit operations against logical copies
 these operations must be translated into

operations against one, some, or all physical
copies

 Nearly all existing approaches follow a
ROWA(A) approach:
 Read-one-write-all-(available)
 Update has to be (eventually) executed at all

replicas to keep them consistent
 Read can be performed at one replica

14May 2008, UPM

Data Consistency
 Strong consistency

 All available copies of an object have the same value at the
end of the execution of an update request

 Clients always read latest versions of data
 High overhead
 Tricky if crashes and network partitions

 weak consistency
 temporal divergence allowed
 eventual consistency

 if update activity ceases, then all copies of a data item converge
eventually to the same value

 Clients might read stale data

15May 2008, UPM

5-phase request execution

Update

16May 2008, UPM

Object Replication:
Fault-tolerance

 A large body of research
 implemented in distributed computing environments

 CORBA developed a standard
 FT CORBA = Fault-tolerant CORBA

 similar models for J2EE distributed computing environment
 Often assumes the use of a group communication system

 multicast
 group maintenance, failure detection
 virtual synchrony synchronizes multicast and group changes

 Correctness
 Replicated System should behave as non-replicated system that has no

failures
 Each request has exactly one “successful” execution
 Client receives exactly one response (failure transparency)
 strong data consistency: data copies are consistent at the end of request

execution
 passive (primary backup) replication vs. active replication

17May 2008, UPM

Passive Replication

Replicated
Servers

A

A

Client
Application

primary

backup

Client Stub

A

A A

backup

A

FIFO multicast

18May 2008, UPM

Passive Replication Failures
 Before Update Propagation

 reexecute on new primary

Replicated
Servers

A

A

Client
Application

primary

backup

Client Stub

A

A

backupprimary

A

19May 2008, UPM

Passive Replication Failures
 After Update Propagation: return result immediately

A

A

Client
Application

primary

backup

Client Stub

A

A

backupprimary

A A

 GCS and virtual synchrony guarantees
 all or none of the backups have state changes
 all have same view of who is primary/backup

 Avoiding wrong reexecution
 request must have unique ids
 primary must send response with state changes
 backups must keep responses

return response
immediately

20May 2008, UPM

Passive Replication

1. The client sends the request to the primary.
2. There is no initial coordination.
3. The primary executes the request.
4. The primary coordinates with the other replicas by sending the

update information to the backups.

5. The primary sends the answer to the client.

21May 2008, UPM

Active Replication

Replicated
ServersA

A

Client
Application

Client Stub
A

A

AA

 Total order multicast
 System only tolerates crash Failures

 client stub returns to client first response it receives;
discards others

 System tolerates Byzantine Failures
 client stub waits for all responses; returns to clients response

that was received by more than half of server replicas

22May 2008, UPM

Active Replication

1. The client multicasts request to the servers with total order
2. Server coordination is given by the total order property
3. All replicas execute the request in the order they are delivered.
4. No coordination necessary (Assumption: determinism)

 All replicas produce the same result
5. All replicas send result to the client; client waits for the first answer

23May 2008, UPM

Active vs. Passive Replication

Determinism
Execution during normal processing

Communication Overhead
CPU overhead
Complexity

Termination protocol
Failure types
Write / read

24May 2008, UPM

AS with DB backend
 J2EE container: runtime environment
 Components: Enterprise JavaBean (EJB)

 Session Bean (SB):
 Java class implements business methods (transfer money, …)
 Stateful bean instance associated with a caller session

 Entity Bean (EB) (or Entity Object): maps to persistent data
 Services:

 Transactions: all-or-nothing
 Security, Persistence, Caching, etc.

SFSB

TMBegin t1

req

Begin t1

EB

Req

D

commit commit
Resp resp

abort abort
abortabort

25May 2008, UPM

AS Failures

Application Server

Y:2

Z:3

Client A buys X

A’s shopping cart

X

Database

AS loses
volatile state

Client receives
Failure exception

Is DB changed?
Depends on Transaction

X:0

1.AS has more replicas

2. Replicate AS’s state
3. Re-execute outstanding
client requests

A’s shopping cart

X
X:1

Client

Exception

26May 2008, UPM

Correctness
 Replicated System should behave as non-replicated

system that has no failures
 Each request has exactly one successful “execution”

 Client receives exactly one response (failure transparency)
 Execution represents possible execution in a non-replicated

system without failure in regard to
 Response returned to client
 State at AS and DBS

27May 2008, UPM

1-1 Pattern

Client AS Database

client request

response
commit tx

start tx

execution

response

access DB

28May 2008, UPM

1-1 Algorithm

Client

Primary AS

Backup AS

R T

RM T

DB

XX(R,T, Resp)RespCRM

Normal Execution Replication Commit Confirm

X:0X:1

29May 2008, UPM

Failure Cases

Client Databasebackup
client request

response

execution1

2

3
4

commit

AS

5

30May 2008, UPM

1-1 Algorithm (II)

Client

Primary AS

Backup AS

R T

RM T

DB

X

X
(R,T, Resp)

RespCRM 2

Crash after replication
before commit2

Crash after commit
before confirm3

3

R

X:0X:1

Primary AS

Ex

31May 2008, UPM

Transaction Patterns
 Relationship between client requests and

server side transactions
 Basic transaction pattern:

 1 client request is 1 transaction
 Advanced transaction patterns

 1 transaction spans more than one client request
 1 client request leads to more than one transaction
 …

Practical Applications:

Advanced Patterns are widely used

32May 2008, UPM

1-N Pattern
Client Database

client request

commit tx2

start tx1
execution access DB

response

access DB

3

backupAS

start tx2

commit tx1

Using 1-1 algorithm to
handle tx1 and tx2.
Handle crash 1 and 3

Cannot handle crash 2

2

1

33May 2008, UPM

Further Issues
 Transaction Patterns

 1-N: 1 client request triggers several nested transactions
 N-1: several client requests build one transaction
 N-N pattern
 Access more than one database

 Combine replication with 2PC
 Reaction of AS on failures of other tiers

 Client / DBS
 Recovery

 Failed or new replicas rejoin as backups
 Receive necessary backup information

 When to install changes at backup
 Immediately when received
 Only upon failover

34May 2008, UPM

Scalability and Fault-tolerance

Client

Client

Replication Group R1

Replication Group R2

Primary of R2

Primary of R1

Backup of R1

Client

Client

Sticky Clients

Backup of R3

Primary of R3
Backup of R2

Replication Group R3

Client

35May 2008, UPM

Scalability and Fault-tolerance

Client

Client

Client

Client

Primary of R2
Backup of R3

Primary of R3
Backup of R2

Replication Group R2

Replication Group R3

Client

State Information

36May 2008, UPM

Scalability and Fault-tolerance

Client

Client

Replication Group R1

Replication Group R2

Primary of R2

Primary of R1

Backup of R1

Client

Client

Sticky Clients

Backup of R3

Primary of R3
Backup of R2

Replication Group R3

Client

37May 2008, UPM

Client assignment

New Client

Load Balancer

Address of
one node

 random
with
forwarding

38May 2008, UPM

Implementation into JBoss 3.2.3
 Interceptor-based framework allows for plug-

in of algorithms at client and server

client Bean
RMI
Stub

RMI
Skeleton

Framework

CRM

RCS

Framework

RM

CH

Client Replicated Server
JBoss ServerJBoss Client

Backup

Replication Algorithm
Replication Algorithm

at client’s side
RCS: Remote Component Stub
CH: Component Handle

39May 2008, UPM

Performance Evaluation based on
Modified ECperf benchmark

Comparison:
Non-replicated JBoss
JBoss + our algorithm (Replicated JBoss)
JBoss’ clustering (does not provide

transactional exactly-once semantics)

Sun ECPerf benchmark
Ordering/ manufacturing / supply-chain

application

40May 2008, UPM

ECperf Response Time: 1-1 algorithm

0

50

100

150

200

250

300

350

400

450

500

550

600

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Injection Rate

R
e

s
p

o
n

s
e

 T
im

e

(m
s
)

1-1 algorithm

JBoss Clustering

Non-Replicated
JBoss

 Without load-balancing: 1 primary, 1 backup

41May 2008, UPM

With load-balancing three
replicas

42May 2008, UPM

Scalability

43May 2008, UPM

Failure

44May 2008, UPM

Recovery

45May 2008, UPM

Commercial AS replication

Nearly all AS servers provide cluster
support
Often lazy propagation
Several use logging instead of replication
Behavior often not well-defined

Often not correct transactional exactly-once
execution

No advanced patterns

46May 2008, UPM

Other Research on AS replication
 Stateless / 1-1:

 FRØLUND, S. AND GUERRAOUI, R. 2002. E-transactions: end-to-end
reliability for three-tier architectures. IEEE Transactions on Software
Engineering (TSE) 28, 4.

 Corba / 1-1:
 ZHAO, W., MOSER, L. E., AND MELLIAR-SMITH, P. M. 2002.

Unification of replication and transaction processing in three-tier
architectures. In Int. Conf. on Distributed Computing Systems (ICDCS).

 FELBER, P. AND NARASIMHAN, P. 2002. Reconciling replication and
transactions for the end-to-end reliability of CORBA applications. In
Int. Symp. on Distributed Objects and Applications (DOA).

 .Net / 1-1,1-N:
 BARGA, R., CHEN, S., AND LOMET, D. 2004. Improving logging and

recovery performance in Phoenix/App. In Int. Conf. on Data Engineering
(ICDE).

47May 2008, UPM

Other Research
 Multi-tier Replication

 FRØLUND, S. AND GUERRAOUI, R. 2000b. X-ability: a
theory of replication. In Symp. on Princ. of Distrib. Comp.
(PODC).

 DEKEL, E. AND GOFT, G. 2004. ITRA: inter-tier relationship
architecture for end-to-end QoS. The Journal of
Supercomputing 28.

48May 2008, UPM

Replication of the DBS tier

Application ServerWeb Server DBS

49May 2008, UPM

Replica Control
Keep copies consistent: replica control
1-copy-serializability
Difference to AS Replication

w(x) w(x)

xx xx xx

Replica
control

50May 2008, UPM

Data Consistency
 Strong consistency

 All available copies of an object have the same value at the end of
the execution of an update request

 Clients always read latest versions of data
 High overhead
 Tricky if crashes and network partitions

 weak consistency
 temporal divergence allowed
 eventual consistency

 if update activity ceases, then all copies of a data item converge
eventually to the same value

 Clients might read stale or inconsistent data

51May 2008, UPM

Correctness
 (Replicated) Data is accessed within the boundaries

of transactions with ACID properties
 A transaction is a sequence of read and write operations
 ROWA: read one - write all

 Global serializability:
 The execution of transactions over the physical copies Di of

the replicated system is equivalent to a serial execution over
the logical single-copy database D.

 Data consistency vs. 1CSR
 A system can provide both strong consistency and global

serializability
 A system can provide weak consistency and global

serializability
 A system can provide strong consistency but no

serializability
 A system can provide provide only weak consistency and no

serializability

52May 2008, UPM

Where can updates be submitted?

 Update Anywhere:
 Update transactions can be

submitted to any site
 Site forwards updates to

other sites

w(x)

read-
only

read-
only

w(x) w(x)w(x)

Primary Copy:
Update transactions can

only execute at the
primary copy (master)

Primary forwards
updates to secondaries

53May 2008, UPM

When to propagate
 Eager:

 within the
boundaries of the
transaction

 Transactions
terminate usually
with 2PC

BOT

R(x)

W(x)

W(x) W(x)

R(y)

request

ack

2PC

Eager

54May 2008, UPM

When to propagate
Lazy:

after the
commit of the
transaction

BOT

R(x)

W(x)

R(y)

Commit

W(x) W(x)
ack

55May 2008, UPM

Basic Eager / Primary Copy

 Primary Copy:
 Upon read: get local lock, read locally and return to user
 Upon write: get local lock, write locally, multicast write to other

replicas in FIFO order; return to user immediately
 Upon commit request: run 2PC (coordinator) to ensure that all have

really installed the changes.
 Upon abort: abort and inform other sites about abort

 Secondary copy:
 Upon read: get local lock, read locally
 Upon write from primary copy: get locks in FIFO order and execute

conflicting writes in FIFO order
 Upon write from client: refuse (writing clients must submit to primary

copy)
 Upon commit request from read-only: commit locally
 Participant of 2PC for update transaction running on primary

 In case of deadlocks:
 Secondary copies should abort the reading transaction

56May 2008, UPM

Properties
 No replication transparency

 update transactions must be submitted to specific primary
 How to achieve transparency?

 Global serializability and strong data consistency
 Reduce message overhead by sending all write

operations (write set) within vote request message of
2PC

 Widely used for fault-tolerance
 e.g. DB2 high availability solution
 conceptually very similar to passive replication for object

replication
 Multiple primary copies

 each object can have primary copy on different server
 What happens with a transaction that updates x and y, and x

and y have their primary copies on different servers?

57May 2008, UPM

Eager Primary Copy
 Update propagation after each update

 Update propagation at end of transaction

58May 2008, UPM

Eager / Update Everywhere with
distributed locking

 Upon read: request local read lock and read locally
and return value to user

 Upon write from client: request local write lock
and write locally, multicast write request to other
sites.

 Upon write from other site: request local write
lock, write locally, and send ok back to user

 Upon receiving ok from all other sites, return ok to
the user

 Upon commit request: run 2PC to ensure that all
have really installed the changes.

 Upon abort: abort and inform other sites about
abort

 Deadlocks might occur.

59May 2008, UPM

Eager / Update Everywhere

60May 2008, UPM

Properties
 Replication transparency achieved
 serializability and strong data consistency
 Concurrency control and coordination more

complicated than with primary copy
 Better load balancing and distribution than Primary

copy
 Reduce message overhead by sending write set at end

of the transaction as part of 2PC
 more complicated: how is this coordinated with locking?

 Basically no database system supports eager update
anywhere

 but many middleware based solutions!

61May 2008, UPM

Lazy / Primary Copy

 Primary Copy:
 Upon read: read locally and return to user
 Upon write: write locally and return to user
 Upon commit/abort: terminate locally
 Sometime after commit: multicast changed objects in a single message to

other sites (in FIFO)
 Secondary copy:

 Upon read: read locally
 Upon message from primary copy: install all changes (FIFO)
 Upon write from client: refuse (writing clients must submit to primary copy)
 Upon commit/abort request (only for read-only txn): local commit
 Note: transaction might write local data that is NOT replicated or for which

the site is the primary copy
 Only local deadlocks
 Note: existing systems allow different objects to have different primary

copies
 A transaction that wants to write X (primary copy is site S1) and Y (primary

copy on site S2) is usually disallowed

62May 2008, UPM

Lazy Primary Copy

63May 2008, UPM

Discussion
 Lazy replication has no server/agreement

coordination within response time
 faster for clients close to primary copy
 transactions might be lost in case of primary crash

 serializability and weak data consistency
 simple to achieve
 secondaries only need to apply updates in FIFO

order
 Data at secondaries might be stale

 Multiple Primary possible
 more locality

 Optimizations for update propagation possible

64May 2008, UPM

Lazy / Update Everywhere
 Any site

 Upon read: read locally and return to user
 Upon write: write locally and return to user
 Upon commit/abort: terminate locally
 Sometime after commit: multicast changed objects in a single

message to other sites (in FIFO)
 Upon message from other site:

 Detect conflicts
 Resolve conflicts

o for numeric types (or types with comparison):
» average:
» minimum/maximum:
» additive:

o discard new value, overwrite old value
o Site priority
o value priority
o earliest/latest timestamp

 Install changes

65May 2008, UPM

Lazy Update Everywhere

66May 2008, UPM

Discussion
Weak data consistency and no global

serializability
Data can be temporarily inconsistent
Reconciliation necessary

No communication within transaction
response time for all transactions

Possible transaction loss in case of crash
Conflict detection and resolution complex

67May 2008, UPM

Primary vs. Update everywere

 Simpler concurrency control
 Less coordination necessary / optimizations are

easier
 Inflexible model:

 Clients must know primary to submit update transactions
 Have to distinguish update from read-only transactions

 Primary is single point of failure and potential
bottleneck

 Multiple primaries
 some type of transaction disallowed
 More locality than one primary
 Less bottleneck

68May 2008, UPM

Lazy vs. Eager
Lazy primary copy: stale reads
Lazy update everywhere: inconsistencies

and reconciliation
No communication within transaction

response time
Possible transaction loss in case of crash
Optimizations for update propagation

possible

69May 2008, UPM

Eager Protocols and Failures

So far: read-one-write-all protocols
(ROWA)

Site failures:
Read-one-write-all-AVAILABLE (ROWAA)

Communication failures:
Combine ROWAA with quorums

70May 2008, UPM

 so far: Kernel-based approach

 new: Middleware-based approach
 Advantages

 Modular
 Do not need access to DB code
 Reusability

 Disadvantages
 No access to concurrency control

information in the kernel

Recent Replica Control
Approaches

71May 2008, UPM

Middleware Primary Copy

 (e.g. Ganymed)

primary secondary

1. submit

scheduler

3. exe

2. forward 4. propagate

Update transactions

primary secondary

1. submit

scheduler

3. exe

2. forward

Read only transactions

5. Apply the
changes

72May 2008, UPM

Adaptability across the entire
cluster

 Transparent Failover
 Load-balancing
 Combination of both
 Data Management

ClientsClientsClients
ClientsClientsClients

Web Servers Application Servers
Databases

73May 2008, UPM

Horizontal Replication

Client

Client

74May 2008, UPM

Loose Coupling

Each tier has its own replication
algorithm

Each tier not aware of replication of
neighboring tiers

Tier only needs to know behavior of
tiers it directly calls (later tiers are
hidden)

75May 2008, UPM

Layered

Client

Middleware-based
Database Replication

Client

WS/AS replication

76May 2008, UPM

Limitations
 Called tier must be aware of replication of

calling tier to some degree
 Exactly-once at called tier does not guarantee

that exactly-once is possible at local tier

77May 2008, UPM

Vertical Replication

Client

Client

78May 2008, UPM

Ideas and Challenges

Idea
Only the first tier runs replication

algorithm
Other tiers are used as block box
Are not aware of any replication
In case of failure, one vertical partition

fails
Challenges

Load-balancing if load of individual tiers
differs

79May 2008, UPM

Combination

Client

Client

80May 2008, UPM

Summary

Replication crucial for
Fault-tolerance and scalability

AS and DBS replication different
requirements

3 protocol types needed
Execution and coordination during normal

processing
Failover (termination)
Recovery

