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Abstract

This paper determines the computational strength of the shared mem-
ory abstraction (a register) emulated over a message passing system, and
compares it with fundamental message passing abstractions like consensus
and various forms of reliable broadcast.

We introduce the notion of Quorum failure detectors and show that
this notion captures the exact amount of information about failures needed
to emulate a shared memory in a distributed message passing system
where processes can fail by crashing. As a corollary of our result, we
determine the weakest failure detector to implement consensus in all en-
vironments, including those where half of the processes can crash.

We also use our result to show that, in the environment where up to
n − 1 processes can crash (out of the total number of processes n), and
assuming that failures cannot be predicted, register, consensus, reliable
broadcast, as well as terminating reliable broadcast, are all, in a precise
sense, equivalent.

1 Introduction

1.1 Emulating shared memory with message passing

Two communication models have mainly been considered in distributed com-
puting: (1) the message passing model and (2) the shared memory model. In
the first model, we typically assume that the processes are connected through
reliable communication channels, which do not lose, create or alter messages.
Processes communicate using send and receive primitives, which encapsulate
TCP-like communication protocols provided in modern networks. The second
model abstracts a hardware shared memory made of registers. The processes
exchange information using read and write operations exported by the registers.

∗Elements of this paper appeared in preliminary forms in two papers by the same authors:
(1) Tights Bounds on Failure Detection for Register and Consensus, in the proceedings of the
International Symposium on Distributed Computing (DISC’02), Springer Verlag (LNCS 2508);
and (2) Realistic Failure Detectors, in the proceedings of the IEEE International Symposium
on Dependable Systems and Networks (DSN’01).
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A write returns a simple indication (ok) that the operation has been performed,
whereas a read returns a value previously written in the register. Each opera-
tion appears to be executed at some individual instant between the time of its
invocation and the time of its reply1 and, unless it crashes, every process that
invokes an operation eventually gets a reply.

It is trivial to build the abstraction of reliable communication channels out
of a shared memory, i.e., out of registers. The converse consists in implementing
a register abstraction (i.e., its read and write operations) in a message passing
model, also called an emulation of a distributed shared memory [5], and is less
trivial. Such emulation is very appealing because it is usually considered more
convenient to write distributed programs using a shared memory model than
using message passing, and many algorithms have been devised assuming a
hardware shared memory [19].

Roughly speaking, the motivation of this work is to study the exact con-
ditions under which the emulation is possible2, and compare these conditions
with those needed to build various message passing abstractions. We perform
our study assuming a finite set of n processes. Each process executes sequen-
tially the deterministic algorithm assigned to them unless they crash, in which
case they stop any computation. A failure pattern captures a crash scenario and
is depicted by a function that associates, to each time τ , the set of processes
that have crashed by time τ . A process that does not crash in a failure pattern
is said to be correct in that failure pattern; otherwise the process is said to be
faulty. If a correct process sends a message to a correct process, the message is
eventually received.3

As in [6], we assume that at least one process is correct in every failure
pattern. A set of failure patterns is called an environment. Considering for
instance the environment where t processes can crash, comes down to assuming
the set of all failure patterns F where strictly more than n − t processes are
correct in F .

1.2 On the weakest failure detector to emulate a shared

memory

It is common knowledge that a necessary and sufficient condition for imple-
menting a register in an asynchronous message passing system, with no bound
on communication delays and process relative speeds, is the assumption of an
environment with a majority of correct processes [5]. In particular, in such an
asynchronous system, it is impossible to devise an algorithm that implements a
register in any environment where half of the processes can crash. The impos-
sibility stems from the absence of any synchrony assumption, and this absence

1We also talk about a linearizable register in the sense of [20] and an atomic register in the
sense of [28].

2In some sense, we seek to precisely determine when results obtained in a shared memory
model can be ported onto a message passing model.

3We will also consider the impact on our study of a stronger communication model where
any message sent by a process to a correct process is eventually received.
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makes any information about process failures possibly inaccurate, e.g., any ac-
curate use of timeouts in an asynchronous system is simply impossible.

An elegant formalism to express information about failures (and hence en-
capsulate synchrony assumptions), and indirectly encapsulate synchrony as-
sumptions, was introduced in [6] through the abstract concept of failure de-
tector. This concept represents a distributed oracle that gives hints about the
failures of processes and can be characterized through axiomatic properties de-
scribing the extent to which these hints reflect the actual failure pattern (i.e.,
actual crashes). A failure detector class gathers a set of failure detectors that
ensures the same properties, and a class A is said to implement some distributed
abstraction P (say a register) if there is an algorithm that implements P with
any failure detector of A. Failure detector classes can be classified within a hier-
archy. Intuitively, a class that is at a high level of the hierarchy gathers failure
detectors that provide more accurate information about crashes (and indirectly
encapsulate stronger synchrony assumptions) than classes at a lower level of the
hierarchy. More precisely, a failure detector class A is said to be stronger (at
a higher level of the hierarchy) than a failure detector class B, if there is an
algorithm that, given any failure detector of class A, implements some failure
detector of class B. We also say that A implements B and B is weaker than A.
If A is stronger than B and the converse is not true, we say that A is strictly
stronger than B (and B is strictly weaker than A).

In particular, three failure detector classes were identified in [6]: P (Perfect),
S (Strong), and ♦S (Eventually Strong). All failure detectors of these classes
output, at any time τ and any process pi, a set of processes that are said to be
suspected by pi at time τ . Those of P ensure a strong completeness property,
which states that eventually all crashed processes will be permanently suspected,
and strong accuracy, which states that no process is falsely suspected; failure
detectors of S ensure strong completeness and weak accuracy, which states that
some correct process is never suspected; those of ♦S ensure, besides strong com-
pleteness, eventual weak accuracy, which states that, eventually, some correct
process is never suspected. A fourth interesting class, denoted Ω, was introduced
in [7]. Failure detectors of this class output, at any time τ and any process pi,
a single process that is said to be trusted by pi at time τ . The property ensured
here is the leader property which guarantees that eventually, one correct process
is permanently trusted by all correct processes.

Among these classes, P is the strongest whereas ♦S and Ω are equivalent
and are the weakest. It is easy to see that failure detectors of class P can be im-
plemented in a synchronous system with a bound on communication delays and
process relative speeds, and failure detectors of classes ♦S and Ω can be imple-
mented in an eventually synchronous system where these bounds are guaranteed
to hold only eventually [6].

Not surprisingly, one can devise an algorithm that implements a register
with failure detector class P , in any environment. But can we do with a strictly
weaker class? We address in this paper the question of the weakest failure
detector class to implement a register, in any environment, including those where
half of the processes may crash. More precisely, we seek to identify a failure
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detector class X such that: (1) X implements a register in every environment,
and (2) every failure detector class D that implements a register is stronger than
X , i.e., D provides at least as much information about failures as X .

Determining X means capturing the exact amount of information about
failures and, in some sense, the minimal synchrony assumptions, needed to
emulate shared memory in a message passing system. As we will discuss later,
determining X will allow us to compare, in a precise sense, the strength of the
shared memory abstraction (emulated in a message passing system) with other
fundamental message passing abstractions. We will say that an abstraction U
is (strictly) stronger than an abstraction V if the weakest failure detector class
to implement U is (strictly) stronger than the weakest failure detector class to
implement V .

1.3 On the weakest failure detector to implement consen-

sus

Interestingly, and as we discuss below, determining the weakest failure detector
X to implement a register, in any environment, would make it trivial to de-
termine the weakest failure detector class to implement the seminal consensus
abstraction, in any environment [14].

Consensus is a distributed abstraction through which processes each pro-
pose an initial value and have to agree on a final decision value among one of
these proposed values.4 Implementing consensus is fundamental in distributed
computing as it makes it possible to implement highly-available objects of any
type [19].

The celebrated FLP impossibility result [14] states that, in an asynchronous
distributed system, consensus cannot be implemented in any environment where
at least one process can crash. This impossibility stems from the absence of any
timing assumption on communication delays and process relative speeds, which
might enable an algorithm to infer information about crashed processes. In [6],
two consensus algorithms using failure detectors were presented. The first algo-
rithm implements consensus with failure detector class S in any environment.
The second algorithm implements consensus with failure detector class Ω.5 but
assumes environments with a majority of correct processes. The very existence
of this algorithm, together with the result of [7], implies that Ω is the weakest
failure detector class to implement consensus in environments with a majority
of correct processes.

What about more general environments? If more than a minority of the
processes can crash, Ω cannot implement consensus [6]. What is the weakest
failure detector class for consensus for this case? This question remained open
for a decade now [7].

4We consider here the uniform variant of consensus where no disagreement is possible even
with processes that decided and crashed [21]. The non-uniform variant will be discussed in
the last section of the paper.

5The algorithm actually uses ♦S but can easily be modified to work with Ω, as ♦S and Ω
are equivalent
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We explain in the following that determining the weakest failure detector
class X to implement a register, trivially answers that question. In fact, we claim
that failure detector class X ×Ω, which would provide both the information of
X and the information of Ω, is the weakest for consensus, in any environment.
Our claim follows from the two observations below.

• In [30], it was shown that consensus can be implemented using registers
and Ω, in every environment. Hence, if X implements a register in any
environment, then X × Ω implements consensus, in every environment.

• Let D be any failure detector class that implements consensus. We know
from [7] that we can use D to implement Ω (i.e., D is stronger than Ω).
Given that we can trivially use consensus as a building block to implement
a register in a message passing system, then D also implements a register.
The very fact that X is the weakest to implement a register also means
here that D is stronger than X . Hence, D is stronger than X × Ω.

1.4 Contributions

This paper introduces the class of Quorum failure detectors, which we denote
by Σ, and which we show is the weakest to implement a register, in any environ-
ment, i.e., X = Σ. Failure detectors of class Σ output, for any failure pattern,
any time τ , and any process pi, a set of processes that are said to be trusted by
pi at time τ , such that the two following properties are satisfied:

• Every two sets of trusted processes intersect;

• Eventually every trusted process is correct.

It is important to notice that, with a Quorum failure detector, the processes
might keep on permanently changing their mind about which processes they
trust. Furthermore, there is no obligation that the processes eventually agree
on the same set of trusted processes.

We first show that any failure detector class D that implements a register in
some environment, implements a failure detector of class Σ in that environment
(necessary condition), and then we give an algorithm that uses Σ to implement
a register in every environment (sufficient condition). We prove the first step of
our result (i.e., necessary condition) in a strong message passing system model
where any message sent to a correct process is eventually received, i.e., even
if the sender crashes right after sending its message; our proof then directly
applies to a weaker model where any message sent by a correct process to a
correct process is eventually received. We show the sufficient condition in the
stronger model; our proof then directly applies to a model where any message
sent to a correct process is eventually received.

We use our result to show that Σ×Ω is the weakest failure detector class for
consensus in any environment, and consequently revisit the relationship between
consensus and register abstractions in a message passing model.
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• By observing that Σ and Ω are actually equivalent in a system of 2 pro-
cesses, we point out the interesting fact that, in a message passing system
of 2 processes with a failure detector, trying to implement a register among
two processes is as hard as trying to solve consensus. This is interesting to
contrast with a shared memory model where a register cannot be used to
solve consensus among two processes (one of which can crash) [14, 32]. In
a sense, we show that a register given in hardware is significantly weaker
than a register implemented in software (among processes that communi-
cate by message passing).

• In the general case (n ≥ 3), the classes Σ and Ω are not equivalent and
their complementarity helps better understand the information structure
of consensus algorithms [8, 6, 29, 17]: Σ encapsulates the information
about failures needed to ensure the safety part of consensus (i.e., the quo-
rum, as pointed in [33], that will lock the consensus value and prevent dis-
agreement), whereas Ω encapsulates the information about failures needed
to ensure the liveness part of consensus (i.e., to ensure that some correct
process will eventually succeed in locking a decision value within a quo-
rum).

We also use our result to compare the register abstraction with another
fundamental abstraction: (uniform) reliable broadcast abstraction [22]. It is a
known fact that both abstractions need a majority of correct processes to be
implemented in an asynchronous message passing model. We show that in any
environment where half of the processes can crash (the correct majority assump-
tion does not hold), register is strictly stronger than reliable broadcast. We show
furthermore that by restricting the universe of failure detectors to those that
cannot provide information about future failures, and which we call realistic
failure detectors, and we consider the wait-free environment [19] where n − 1
processes can crash, the weakest failure detector classes to implement a register,
consensus, as well as reliable broadcast and other abstractions like terminating
reliable broadcast [22] (a variant of Byzantine Agreement in a model with crash
failures) are all the very same one. All these problems are in this case, and in
a precise sense, equivalent.

To summarize, the contributions of this paper are the following:

• We determine the weakest failure detector to implement a register, in any
environment.

• We determine the weakest failure detector to implement consensus, in any
environment, and we observe that in a system of 2 processes, consensus
and register are equivalent.

• We show that a register is strictly stronger than a reliable broadcast, in
any environment where half of the processes can crash (otherwise they are
equivalent).
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• We show that, with respect to realistic failure detectors, register, con-
sensus and terminating reliable broadcast are equivalent in the wait-free
environment where n − 1 processes can crash.

1.5 Related work

Several authors considered augmenting an asynchronous shared memory model
with failure detectors (e.g., [30, 35]), i.e., augmenting register abstractions with
failure detectors. To our knowledge however, the question of the weakest fail-
ure detector class to implement the register itself in a message passing system
was never addressed. As we pointed out, in an asynchronous message passing
system, a register can be implemented in any environment with a majority of
correct processes, i.e., without any external failure detector [5]. To implement
a register when more than half of the processes can crash, we need some syn-
chrony assumptions to infer information about process crashes: this is precisely
what Σ encapsulates. Not surprisingly, it is easy to implement a failure detector
of class Σ in a message passing system if a majority of the processes is correct.
Our result is in this sense a generalization of [5]. With a correct majority, our
weakest failure detector result for consensus simply boils down to the result
of [7]: Σ×Ω is Ω, which was indeed shown to be the weakest for consensus with
a majority of correct processes. So far, the “weakest” failure detector class that
was known to implement consensus in any environment was S [6]. We show
in this paper that failure detector class Σ × Ω is strictly weaker than failure
detector class S. In other words, a first glance intuition that S could be the
weakest for consensus would have been wrong.

From a more general perspective, our approach shares some similarities with
the approach, initiated in [19], and which aims at comparing the strength of
shared memory abstractions using the very notion of consensus number. This
notion measures the maximum number of processes that can solve consensus
using a given abstraction. We also seek here to compare the strength of dis-
tributed programming abstractions, but we do so considering a message passing
model and using, as a comparison metric, the notion of failure detector. This
leads to some fundamental, and sometimes surprising differences.

• Our approach is more general because we do not restrict our space of
abstractions to shared objects with a sequential specification [19], e.g,
there is no to describe a reliable broadcast abstraction as a shared memory
object and study its strength following the the approach of [19].

• Whereas it is known that a register has consensus number 1 (i.e., cannot
be used to solve consensus among 2 processes), we show in this paper
that the failure detector that is needed to emulate a register in a message
passing system of 2 processes, can be used to solve consensus among 2
processes.

• In the general case (n > 2), consensus is the strongest abstraction in the
sense of [19]. In our approach, this is only true if we restrict the space of
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failure detectors to realistic onces and consider environment where n − 1
processes can crash. In this case, all interesting abstractions we know of
(register, reliable broadcast, etc.) have the same strength.

1.6 Roadmap

The rest of the paper is organized as follows. Section 2 gives our system model.
Section 3 defines failure detector class Σ. Section 4 recalls the register abstrac-
tion. Section 5 shows (necessary condition) that any failure detector class that
implements a register implements Σ. Section 6 shows (sufficient condition) that
Σ implements a register in every environment. Section 7 derives the weakest
failure detector class to implement consensus in any environment. Section 8 uses
our result to compare a register with a reliable broadcast abstraction. Section 9
restricts our universe of failure detectors and environments and derives interest-
ing equivalence relations between various distributed computing abstractions.
Section 10 discusses the impact of non-uniform specifications.

Many proofs of results stated in the paper are gathered in the appendix.
Most of these proofs have to do with failure detector comparisons. We conduct
them using simple algorithm reductions. (like in [7] but unlike in [23]). Hence,
by determining for instance the weakest failure detector class to implement some
abstraction (e.g., a register or consensus), we determine what exact information
about failures processes need to know and effectively compute to implement
that abstraction.

2 System model

Our model of asynchronous computation with failure detection is the FLP model
[14] augmented with the failure detector abstraction [6, 7]. A discrete global
clock is assumed, and Φ, the range of the clock’s ticks, is the set of natural
numbers. The global clock is used for presentation simplicity and is not acces-
sible to the processes. We sketch here the basic elements of the model, focusing
on those that are needed to prove our results. The reader interested in specific
details about the model should consult [7, 9].

2.1 Failure patterns and environments

We consider a distributed system composed of a finite set of n processes Π = {p1,
p2, . . . , pn}. The processes are sometimes simply denoted by 1, 2, .., n where
there is no ambiguity. Unless explicitly stated otherwise, we will assume that
|Π| = n ≥ 3. Processes can fail by crashing. A process pi is said to crash at
time τ if pi does not perform any action after time τ (the notion of action is
recalled below). Otherwise, the process is said to be alive at time τ . Failures
are permanent, i.e., no process recovers after a crash. A correct process is a
process that does not crash. A failure pattern is a function F from Φ to 2Π,
where F (τ) denotes the set of processes that have crashed by time τ . The set of
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correct processes in a failure pattern F is noted correct(F ). As in [6], we assume
that every failure pattern has at least one correct process. An environment is
a set of failure patterns. Environments describe the crashes that can occur in
a system. When we talk about the environment where t processes can crash
(t < n), denoted by Et, we implicitly assume the set of failure patterns where
at most t processes crash (in every failure pattern). Environment En−1 will be
called the wait-free environment.

2.2 Failure detectors

Roughly speaking, a failure detector D is a distributed oracle which gives hints
about failure patterns. Each process pi has a local failure detector module of D,
denoted by Di. Associated with each failure detector D is a range RD (when the
context is clear we omit the subscript) of values output by the failure detector.
A failure detector history H with range R is a function H from Π × Φ to R.
For every process pi ∈ Π, for every time τ ∈ Φ, H(i, τ) denotes the value of the
failure detector module of process pi at time τ , i.e., H(i, τ) denotes the value
output by Di at time τ . A failure detector D is defined as a function that maps
each failure pattern F to a set of failure detector histories with range RD. D(F )
denotes the set of all possible failure detector histories permitted for the failure
pattern F , i.e., each history represents a possible behaviour of D for the failure
pattern F .

Four classes of failure detectors introduced in [6, 7], and recalled in the
introduction of this paper, are of interest in this paper. All have range R = 2Π.
For any failure detector D in any of the first three classes, any failure pattern
F , and any history H in D(F ), H(i, τ) is the set of processes that are said to
be suspected by process pi at time τ . (1) The class of Perfect failure detectors
(P) gathers all those that ensure strong completeness, i.e., eventually every
process that crashes is permanently suspected by every correct process, and
strong accuracy, i.e., no process is suspected before it crashes. (2) The class
of Strong failure detectors (S) gathers those that ensure strong completeness
and weak accuracy, i.e., some correct process is never suspected. (3) The class
of Eventually Strong failure detectors (♦S) gathers those that ensure strong
completeness and eventual weak accuracy, i.e., eventually, some correct process
is never suspected.

The fourth class is the class Ω: for any failure detector D in this class, any
failure pattern F , and any history H in D(F ), H(i, τ) is the process that is said
to be trusted by process pi at time τ . Every failure detector of Ω ensures the
following leader property: eventually, a single correct process is permanently
trusted by all correct processes.

2.3 Algorithms

An algorithm using a failure detector D is a collection A of n deterministic
automata Ai (one per process pi). Computation proceeds in steps of the algo-
rithm. In each step of an algorithm A, a process pi atomically performs the
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following three actions: (1) pi receives a message from some process pj , or a
“null” message λ; (2) pi queries and receives a value d from its failure detector
module Di (d ∈ RD is said to be seen by pi); (3) pi changes its state and sends a
message (possibly null) to some process. This third action is performed accord-
ing to (a) the automaton Ai, (b) the state of pi at the beginning of the step,
(c) the message received in action 1, and (d) the value d seen by pi in action 2.
Messages that are not null are uniquely identified and the message received by
a process pi is chosen non-deterministically among the messages in the message
buffer destined to pi, and the null message λ. In a step the process performs
one event.

A configuration is a pair (I, M) where I is a function mapping each process
pi to its local state, and M is a set of messages currently in the message buffer. A
configuration (I, M) is an initial configuration if M = ∅ (no message is initially
in the buffer): in this case, the states to which I maps the processes are called
initial states. A step of an algorithm A is a tuple e = (i, m, d, A), uniquely
defined by the algorithm A, the identity of the process pi that takes the step,
the message m received by pi, and the failure detector value d seen by pi during
the step. A step e = (i, m, d, A) is applicable to a configuration (I, M) if and
only if m ∈ M ∪ {λ}. The unique configuration that results from applying e to
configuration C = (I, M) is noted e(C).

2.4 Schedules and runs

A schedule of an algorithm A is a (possibly infinite) sequence S = S[1]; S[2]; . . .
S[k]; . . . of steps of A. A schedule S is applicable to a configuration C if (1) S is
the empty schedule, or (2) S[1] is applicable to C, S[2] is applicable to S[1](C)
(the configuration obtained from applying S[1] to C), etc.

Let A be any algorithm and D any failure detector. A run of A using D is a
tuple R =< F, H, C, S, T > where H is a failure detector history and H ∈ D(F ),
C is an initial configuration of A, S is an infinite schedule of A, T is an infinite
sequence of increasing time values, and

• (1) S is applicable to C,

• (2) for all k where S[k] = (i, m, d, A), we have pi 6∈ F (T [k]) and d =
H(i, T [k]),

• (3) every correct process takes an infinite number of steps, and

• (4. weak channel assumption) every message sent by a correct process to
a correct process pi is eventually received by pi.

• (4’. strong channel assumption) in fact, we will also discuss the impact
on our results of an alternative model with a stronger definition of the
channels where we require that every message sent to a correct process pj

is eventually received by pj . With this weaker definition, a message sent
by a process that crashed after the sending might never be received.
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Let o and o′ be two events of a run, by definition, we say that o precedes o′

(o ≺ o′) if o occurs before o′. If neither o ≺ o′ nor o′ ≺ o, then o and o′ are said
to be concurrent.

2.5 Implementability

Every abstraction U (e.g., register, consensus, etc) is associated with exactly one
set of runs, which we also denote by U , i.e., the runs that obey the specification
of U . We say that an algorithm A implements an abstraction U using a failure
detector D in some environment if every run of A using D in that environment is
in U . We say that D implements (or solves) U in some environment if there is an
algorithm that implements U using D in that environment. We say that a failure
detector class implements (or solves) an abstraction U in some environment if
there is an algorithm that implements U , in that environment, with every failure
detector of that class.

We say that a failure detector D1 is stronger than a failure detector D2
in some environment (written sometimes D2 � D1) if there is an algorithm
(sometimes called a reduction algorithm) that implements D2 using D1 in that
environment, i.e., that can emulate the output of D2 using D1 [6]. The algorithm
does not need to emulate all histories of D2. It is required however that, for
every run R =< F, H, C, S, T >, where H ∈ D1(F ) and F is in the environment,
the output of the algorithm with R be a history of D2(F ). We say that D1 is
strictly stronger than D2 in some environment (D2 ≺ D1) if D2 � D1 and
¬(D1 � D2) in that environment. We say that D1 is equivalent to D2 in some
environment (D1 ≡ D2), if D2 � D1 and D1 � D2 in that environment.

We say that a failure detector class D is the weakest to implement an ab-
straction U in some environment if (a. sufficient condition) D solves U in that
environment and (b. necessary condition) any failure detector class that solves
U is stronger than D in that environment. Similarly, an abstraction U is said
to be stronger (resp. strictly stronger) than an abstraction V in some environ-
ment, if the weakest failure detector for U is stronger (resp. strictly stronger)
than the weakest failure detector for V .

3 Quorum failure detectors

In this section, we define the class of Quorum failure detectors, denoted by Σ,
and which we will show in subsequent sections, is the weakest to implement a
register, in any environment.

3.1 Properties

Quorum failure detectors have range 2Π. That is, they output, at any time τ ,
and any process pi, a list of processes. We say that these processes are trusted
by pi at time t. By convention, and to simplify the presentation, we assume
that after a process crashes, the output of any quorum failure detector at this
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process is Π, i.e., a crashed process trusts all processes. More precisely, if pi has
crashed by time τ , we assume that the output of any quorum failure detector
D is HD(i, τ ′) = Π for any τ ′ ≥ τ .

The two following properties are ensured by any Quorum failure detector D:

1. Intersection. Given any two lists of trusted processes, possibly at different
times and by different processes, at least one process belongs to both lists.
More precisely:

• ∀F ∈ E , ∀pi, pj ∈ Π, ∀HD ∈ D(F ), ∀τ, τ ′ ∈ Φ : HD(i, τ) ∩ HD(j, τ ′) 6=
∅.

2. Completeness. Eventually no faulty process is ever trusted by any correct
process. More precisely:

• ∀F ∈ E , ∀pi ∈ correct(F ), ∀HD ∈ D(F ), ∃τ ∈ Φ, ∀τ ′ > τ ∈ Φ :
HD(i, τ ′) ⊆ correct(F ).

The combination of the intersection and completeness properties implies the
following accuracy property, ensured by any Quorum failure detector D:

• Accuracy. Every list of trusted processes contains at least one correct
process. More precisely:

– ∀F ∈ E , ∀pi ∈ Π, ∀HD ∈ D(F ), ∀τ ∈ Φ : HD(i, τ) ∩ correct(F ) 6= ∅.

To see why intersection and completeness properties imply accuracy, remem-
ber first that we consider by default environments where at least one process is
correct. Indeed, let pi be any correct process in failure pattern F , and consider
any failure detector history HD in D(F ). From completeness, there is a time
τ0 such that HD(i, τ0) contains only correct processes. Consider any process pj

and any time τ . By intersection, HD(j, τ) ∩ HD(i, τ0) is not empty and thus
HD(j, τ) contains at least one correct process. Note that the accuracy property
of Quorum failure detectors does not mean that any process that belongs to two
lists of trusted processes is correct.

3.2 Strength

We discuss here the “strength” of Σ by comparing it to various failure detectors
introduced in the literature [6]. We only give here some results that we believe
are useful to understand the rest of the paper. The full picture, together with
corresponding proofs, are given in the appendix.

First, it is easy to see how to implement a Quorum failure detector in any
environment where a majority of the processes is correct. Indeed, consider a
model of communication channels according to which any message sent from a
correct process to a correct process is eventually received (this is the weakest
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of the two models of message passing communication we consider in this pa-
per). Initially, every process trusts all processes. Periodically, every process pi

sends a message to all processes and waits for corresponding acknowledgments.
When pi receives acknowledgments from a majority of processes, pi outputs this
majority as its list of trusted processes. The intersection property follows from
the fact that any two majorities intersect. Consider the time after which all
faulty processes have crashed and all their acknowledgments (sent prior to their
crashing) have been received or will never be received. Such a time exists by
our communications channels assumption. By this very same assumption, af-
ter this time, every correct process pi keeps on receiving acknowledgments only
from correct processes, and will only trust correct processes. This ensures the
completeness property.

It is also easy to see that failure detector class S (and hence P) is stronger
than Σ in any environment. Indeed, using any failure detector D of class S,
one can implement a failure detector of class Σ by emulating its output through
some distributed variable Trust as follows. Every process pi periodically (a)
consults the list of processes that are suspected to have crashed, i.e., the output
of the local failure detector module Di, and (b) outputs in Trusti, the local
value of variable Trust at pi, the exact complement of that set, i.e., pi trusts all
processes that are not suspected. The completeness property of Trust follows
from that of S, whereas the intersection property of Trust follows from the
accuracy property of S: at least one process will never be suspected and this
process will belong to all sets of trusted processes. As we will show in Section 7,
the converse (emulating S with Σ) is generally not possible. More precisely, we
show in the appendix that failure detector class S is strictly stronger than Σ
in any environment Et with t > 0. Furthermore, we show that failure detector
classes Ω (and hence ♦S) and Σ are incomparable in any environment Et with
t ≥ n/2. Remember that we consider a system with at least three processes
(n > 2). We show in the appendix that in a system of 2 processes, Σ and Ω are
equivalent. This has some interesting consequences that we discuss later in the
paper.

4 The atomic register abstraction

Before proving that Σ is the weakest failure detector class to implement a regis-
ter, we first recall in this section the definition of the register abstraction and we
recall some related results that are used to prove that Σ is the weakest failure
detector class to implement a register.

4.1 Background

A register is a shared object accessed through two operations: read and write.
The write operation takes as an input parameter a specific value to be stored
in the register and returns a simple indication ok that the operation has been
executed. The read operation is supposed to return a value written in the regis-
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ter; we assume that, initially, a specific write execution has initialized the value
of the register. The registers we consider are atomic [28] (linearisable [19]) and
fault-tolerant: they ensure that, despite concurrent invocations and possible
crashes of the processes, every correct process that invokes an operation even-
tually gets a reply (a value for the read and an ok indication for the write), and
any operation appears to be executed instantaneously between its invocation
and reply time events. (A precise definition is given in [19, 3].)

So far, we have been implicitly assuming that any process can invoke any
operation on a register. Such a register (i.e., that can be read and written by any
process) is sometimes called a MWMR (multi-writer/multi-reader) register [28]:
we simply call it a register here. A register that can be read by all processes
and written by exactly one process (called the writer) is called a SWMR (single-
writer/multi-reader) register [28]; and a register that can be read by exactly one
process (called the reader) and written by exactly one process (called the writer)
is called a SWSR (single-writer/single-reader) register [28]. Interestingly, it was
shown that, in any environment, one can implement a (MWMR) register out of
SWSR registers [24, 38].

We will exploit this relation between different kinds of registers to simplify
our proofs. More precisely, we will show that a (MWMR) register can be imple-
mented with Σ in any environment, by simply showing that a SWSR register can
be implemented with Σ in that environment. Then we will assume that some
failure detector class D implements a SWMR register in some environment, and
show that D implements Σ in that environment.

4.2 Properties

In the following, we precisely define a SWMR register abstraction through three
properties (along the lines of [3]). These properties will be used later in our
proofs.

Consider any run of an algorithm implementing a register abstraction. Let
o be any read or write operation execution; when there is no ambiguity, we say
operation for operation execution. We assume that different write operations
store different values in the register; this can simply be achieved by appending
to every input value of a write the identity of the writer process together with
some local timestamp.

We denote by ob and oe, respectively, the events corresponding to the in-
vocation of o by some process (beginning of o) and the return of o’s reply by
that process (end of o). We say that the operation o terminates when its re-
ply event occurs, and we say that a value has been written (resp. read) if the
corresponding write (resp. read) was terminated.

We assume that each process (reader or writer) invokes the operations of a
register in a sequential manner: the next (read or write) operation begins after
the previous one has terminated. Furthermore, we assume that the register
initially contains a specific value ⊥. For uniformity of presentation, we assume
that this value was initially written by the writer.
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An algorithm is said to implement a SWMR register if it implements its
read and write operations in such a way that the following three properties are
satisfied.

• Liveness: If a correct pi invokes an operation, the operation eventually
terminates.

• Validity (safety 1): Every read operation returns either the value written
by the last write that precedes it, or a value written concurrently with
this read.

• Ordering (safety 2): If a read operation r precedes a read operation r′

then r′ cannot return a value written before the value returned by r.

5 The necessary condition

We show in this section that any failure detector class that implements a register
in a given environment, is stronger than Σ in that environment.

5.1 Overview

We describe in the following an algorithm, denoted by R, that uses any algorithm
that implements a register in some environment and with some failure detector
D, to emulate the output of a failure detector of class Σ. The underlying
algorithm is supposed to operate in a strong message passing system model
where any message sent to a correct process p is eventually received by p.

The emulation is achieved within a distributed variable, denoted by Trust:
the local value of this variable at process pi is denoted by Trusti. Algorithm R
ensures that variable Trust ensures the completeness and intersection properties
of Σ.

Our algorithm R makes use of the very fact that some algorithm uses D to
implement a register, i.e., to implement its write and read operations. More
precisely, we assume here n SWMR registers. Every process pi is associated
with exactly one register Regi: pi is the only writer of Regi and all processes
read in Regi.

There are three key ideas underlying our algorithm R:

1. Every process pi periodically writes in Regi a timestamp k, together with
a specific value that we will discuss below (in the third item): the times-
tamp k is incremented for every new write performed by pi. Process pi

determines the processes that participate in every write(k,*) (i.e., in the
exchange of messages underlying write(k,*)) and this set is denoted by
Pi(k). Roughly speaking, this set is determined by having every process
pj that receives some message m in the context of the k−th write from
pi, tag every message that causally follows m, with k, pj , as well as the
list of processes from which messages have been received with those tags.
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When pi terminates write(k,*), pi gathers in Pi(k) the set of all processes
that participated in write(k,*).

An important property of every set Pi(k) is that it must contain at least
one correct process.

2. Every process pi maintains a list of process sets, Ei, where each set within
Ei gathers the processes that participated in some previous write per-
formed by pi. Basically, before write(k,*) in Regi, Ei := {Pi(0), Pi(1), Pi(2),
..Pi(k − 1)}. Initially, Ei contains exactly one set: the set of all processes
Π, i.e., we assume that Pi(0) = Π. Then, whenever pi terminates some
write, pi updates the set Ei.

An important property of the set Ei is that, eventually, all new sets (Pi(k))
that will be added to Ei will contain only correct processes. This is because
after all faulty processes have crashed, the processes that will participate
in new write operations will necessarily be correct.

3. The value that process pi writes in Regi, together with k (i.e., its k−th
write), is the value of Ei after the (k − 1)−th write. After a process pi

writes Ei in Regi, pi reads every register Regj written by every process
pj . Process pi selects at least one process px from every set it reads (in
some register Regj) by sending a message to all processes in this set and
waiting for at least one reply. The value of the variable Trusti is the value
of Pi(k − 1) augmented with every process px that pi selected.

An important property of variable Trusti is that it is permanently updated
if process pi is correct. This is because pi only waits for a message from
one process in every set that it reads in a register, and every such set
contains at least one process.

In short, the completeness property of Σ is ensured because every correct
process pi will permanently keep on updating variable Trusti and this variable
will eventually contain only correct processes. The intersection property of Σ is
ensured because every process pi writes in its register before reading all other
registers and updating Trusti.

5.2 The algorithm

To describe our algorithm R more precisely, we divide it in two parts. We
describe in Figure 1 how to emulate variable Trust using a specific SWMR
register customized to our needs. Then we show in Figure 2 how to implement
that specific register with any algorithm that implements a traditional SWMR
register in a message passing system with some failure detector.

The specific SWMR register we consider has a traditional read and a non-
traditional write. The write has, besides any possible input parameter that
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the writer might be using to store some value in the register, a specific input
parameter: an integer that the writer uses to indicates the number of times the
write operation has been invoked. Furthermore, the write returns an output,
which is the list of processes that participated in the write (i.e., in the underlying
message passing exchange).

We first define here more precisely what participate means. Let w be some
write operation invoked by some writer process pi in the specific SWMR register
we consider; wb, respectively we, denotes the beginning event, respectively the
termination event of the write operation w. Let � be the causality relation
of [27], the set of participants in w, is the set of processes:

{pj ∈ Π|∃e event of pj : wb � e � we}

The algorithm of Figure 2 describes how to track and return the set Pi(k)
of participants during every write(k,*) operation. For this, let pi be the writer
of a SWMR atomic register Regi and consider an algorithm implementing this
register with some failure detector. We tag every message causally after the
beginning of the k–th write of Regi and causally before the beginning of the
k + 1–th write with a pair (k, L), where L is the list of participants to the k–th
write.

5.3 Correctness

The following lemma states that the set of processes returned by the algorithm
of Figure 2 is indeed the set of processes that participate in the write.

Lemma 5.1 In the algorithm of Figure 2, the set of participants of the k–th
terminated write is Pi(k).

Proof. Let w be the k–th terminated write of pi. We denote the list of partic-
ipants in w as P(w).

1. We prove first that P(w) ⊆ Pi(k). Let x be any process of P(w). There
exists an event e of x such that wb � e � we. Let M1 be the causal
chain of messages from wb to e and M2 be the causal chain from e to we.
Every message in M1 or M2 can only be tagged by (j, ∗) with j ≥ k. As
pi does not begin the j–th write, with j > k, before the end of the k–th
write, hence all messages of M2 are tagged by (k, ∗). Moreover, an easy
induction proves that every message in M2 has tag (k, K) such that x is
in K. As the tags of these messages are in Pi(k) we have x ∈ Pi(k).

2. Now we prove that Pi(k) ⊆ P(w). Let x be any process of Pi(k).

As only x itself can add its identity to the list L of the tag (k, L) of a
message, any pu can only receive a message with tag (k, L) such that
x ∈ L only causally after that x sends some message with tag (k, M)
with x ∈ M . Let e0 be the event corresponding to the first time x sends
message with tag (k, L) and let e1 be the event corresponding to the first
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Code for every process pi

1 Initialization:
2 Pi(0) := Π
3 Ei := {Pi(0)} /* Ei is the set of subsets of processes that participate in write on Regi */
4 k:=0 /* k represents the number of times a write on was invoked by pi */
5 Fi := ∅ /* Fi is a temporary value of trusted processes */
6 Trusti := Π /* Initially, all processes are trusted */
7 start task 1 and task 2

8 task 1:
9 loop forever

10 k := k + 1
11 Pi(k) := Regi.write(k, Ei)
12 Ei := Ei ∪ {Pi(k)}
13 Fi := Pi(k − 1)
14 forall pj ∈ Π do

15 Lj := Regj .read()
16 forall X ∈ Lj do

17 send(k, ?) to all processes in X
18 wait until receive(k, ok) from at least one process pt ∈ X
19 Fi := Fi ∪ {pt}
20 Trusti := Fi

21 task 2:
22 upon receive(l, ?) from pj send(l, ok) to pj

Figure 1: Emulating a Quorum failure detector

time pi receives a message with tag (k, L) with x ∈ L we have: e0 � e1.
Moreover, as x ∈ Pi(k), the algorithm ensures that e1 � we and then (1)
e0 � we.

As only pi increments the value of j in tag (j, ∗), and the value of Current
for x can only be set to k when x receives a message with tag (k, ∗). Given
that in e0 the value of Current for x is k, we have: (2) wb � e0.

We can deduce from (1) and (2) that e0 is an event of x such that wb �
e0 � we. Hence x ∈ P(w)

The following lemma states that any set of processes participating to some
write contains at least one correct process.

Lemma 5.2 Let w be the k−th terminated write in some failure pattern F :
Pi(k) ∩ correct(F ) 6= ∅
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/* Every process pi tags every message it sends with Tag */
/* Tag, the tag for register Regi, is a pair (k, L)*/

1 Initialization:
2 Current := 0
3 Tag := (0, ∅)

4 Code for every process pj (including the writer pi of Regi):
5 When pj receives a message tagged with (k, L) for Regi

6 case Current > k : skip

7 case Current = k : Tag := (k, L ∪ Tag.L∪ {pj})
8 case Current < k : Tag := (k, L ∪ {pj})
9 Current := k;

10 Code for the writer pi of Regi:
11 When pi begins the k-th write on register Regi

12 Current := k
13 Tag := (k, {pi})
14 When pi ends the k-th write operation on register Regi

15 Return L : such that Tag = (k, L)
16 /* L is the set of participants of the k–th write */

Figure 2: Tagging for register Regi

Remember first that two consecutive write operations always write two dif-
ferent values.

Proof. Remember that correct(F ) 6= ∅. In order to obtain a contradiction,
assume that for some terminating write w of pi in register Regi and run α =<
F, H, C, S, T >, we have Pi(k) ∩ correct(F ) = ∅.

In the following, we exhibit several runs; all these runs have F as failure
pattern and H as failure detector history. They may differ from run α above by
the time at which processes take steps: we strongly use the fact that the system
is asynchronous.

• We construct first run α0, identical to α up to we, and for which the writer
pi does not invoke any write after we, clearly, the set of participants in
the k-th write w, Pi(k), is the same in α and α0. Let v be the value
of register Regi before the terminating write w and v′ the value after
(recall we assume that v 6= v′). Let τe be the time of the event we in α,
and consider time τ ≥ τe after which no more processes crash. Remark
that, by hypothesis, at time τ all participants in w have crashed. For any
process x in Pi(k), let bx be the first event of x such that wb � bx � we,
and ex be the last event of x such that wb � ex � we. In the following,
b−1
x denotes the last event of x before bx.

• We now construct run β. For any process x of Pi(k), β is identical to α0

up to b−1
x , but after b−1

x , x does not take any step until time τ . As after

19



time τ , x has crashed, x does not take any step after b−1
x . The processes

of Π − Pi(k) take steps exactly as in α up to time τ (at the same time,
but perhaps the step is not the same). At time τ , a correct process, say
pj , reads the register Regi and pj ends the read at time τ ′. As w is not a
write operation in run β, pj reads the value v of the register.

• We now construct run γ. For any process x of Pi(k), γ is identical to α
up to ex. After ex, x does not take any step until time τ . If x sends after
bx a message to a process of Π − Pi(k), the reception of this message is
delayed until after time τ ′. Processes of Π−Pi(k) take steps exactly as in
β up to time τ ′ (now the steps that these processes take in γ and β, are
the same steps up to time τ ′). After time τ ′, the correct processes may
receive the pending messages and runs β and γ may differ.

In γ, the writer has completed its write operation w. The reader pj begins
the read after the end of the write: by the properties of a SWMR register
pj reads v′.

For pj , γ and β are indistinguishable. As pj reads v in β, pj reads v′ 6= v in
γ — a contradiction.

Proposition 5.3 The algorithms of Figure 1 and Figure 2 emulate in variable
Trust a failure detector of class Σ.

Proof. Variable Trust outputs a list of processes. We show that this list
ensures the completeness and intersection properties of Σ. Remember that the
copy of the variable Trust at process pi is denoted by Trusti.

In the following, we denote by Ti = Trust1i , . . . , T rustmi . . . the (finite or
infinite) sequence of values written by pi in its variable Trusti (Line 20 of the
algorithm of Figure 1), and we denote by τ 1

i , . . . , τm
i , . . . the corresponding se-

quence of times at which pi updates variable Trusti: more precisely, pi writes
Trusti for the k-th time at time τk

i and the value written is Trustki . By defi-
nition, the sequence Ti is also the sequence of outputs of the emulated failure
detector at process pi.

1. We first prove the completeness property of Trust. We need to show that
for every correct process pi, there is an integer m such that for every
m′ > m, Trustmi contains only correct processes.

At least one of the processes in every set Pj(k) at any process is correct by
Lemma 5.2. Therefore, at least one of the processes in a set X answers to
the message (k, ?) from process pi. Therefore, process pi cannot block on
Line 18 and if pi is a correct process, pi updates infinitely often variable
Trusti and the sequences Trust1i , . . . T rustmi . . . as well as τ1

i , . . . , τm
i , . . .

are infinite sequences.

By Lemma 5.1 and the very fact that eventually, all processes that partic-
ipate in the write operations are correct, there is a time τ after which all
faulty processes have crashed. As pi is correct, consider some m such that
τm
i > τ . Let pl be any process that belongs to Trustm′

i with m′ ≥ m + 2:
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• either pl belongs to Pi(m
′ − 1), meaning that pl is a correct process.

• or pl answered some message (m′, ?) from pi, ensuring that pl was
not crashed at least until time τm

i .

In both cases, pl is correct, proving the completeness property.

2. We now prove that Trust ensures the intersection property. More precisely,
we prove that, given any two processes pi and pj , for all k, l such that
Trustki and Trustlj are both defined, we have Trustki ∩ Trustlj 6= ∅.

Remark that if l = 0 or k = 0 then either Trustl
i or Trustkj is the set

of all processes Π, as clearly Trust is never empty, in this case we have
Trustli ∩ Trustkj 6= ∅. Therefore assume that l > 0 and k > 0.

Notice the following facts:

• If process pi writes Ei in its register Regi (Line 11) during the k-th
iteration, then, for all k′ < k, Pi(k

′) ∈ Ei. By construction, the value
of Ei for the k-th write of register pi is the set of all sets Pi(k

′) for
k′ < k.

• It is clear from Line 19 that Pi(l − 1) ⊆ Trustli.

As each process pi writes its own register Regi and then reads every reg-
ister of all other processes, due to the atomicity of registers, either the
k–write of register Regj by pj occurs before the l–th read of this register
by process pi, or the l-write of register Regi is before the k–th read of this
register by process pj .

Therefore, assume without loss of generality that pi does its l–th read of
the register Regj after the k-th write of Regj by pj . From the algorithm,
at least one s ∈ Trustli (1) comes from the set of sets Lj read by pi in
the l–th read of Regj and (2) is such that pi has received an (l, OK)
answer from s. As we assume that the l–th read is after the end of the
k–th write of Regj by pj , we deduce that at least one s ∈ Trustl

i belongs
to Pj(k − 1), as Pj(k − 1) ⊆ Trustkj , s belongs to Trustkj , proving the
intersection property.

6 The sufficient condition

The aim of this section is to show that failure detector class Σ implements
a register abstraction in any environment. More precisely, we describe an al-
gorithm that implements a SWSR register in any environment and with any
failure detector of Σ. We give our algorithm assuming a weak communication
model where any message sent by a process pi to a process pj is guaranteed to
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be received by pj provided that both processes are correct. The writer of our
register is denoted by pw whereas the reader is denoted by pr.

Our algorithm, described in Figure 3 is an adaptation of [5] and works as
follows: Roughly speaking, where the algorithm of [5] uses the assumption of a
majority of correct processes to implement the read and write operations, we
use the Quorum failure detector. Basically, every process (including the writer
pw and the reader pr) maintains the current value of the register.

• The writer process pw tags each write invocation with a unique sequence
number, incremented for every new write invocation. The writer then
sends the value to be written with the associated sequence number to
all processes. Each process pi is supposed to store this value with its
sequence number and sends back an acknowledgment to the writer, unless
pi had already stored a value with a higher sequence number. The writer
pw waits until receiving acknowledgments from every process trusted by
pw, i.e., from every process output by its failure detector module, before
terminating the write.

• For any read operation, the reader pr sends a request to read to all. Every
process is supposed to return a message containing the last value written
and the corresponding sequence number. The reader then selects the value
with the largest sequence number among those received from the trusted
processes and the one previously hold by the reader. Finally, the reader
updates its own value and timestamp with the selected value, and then
returns this value.

It is important to notice that the set of processes trusted by the reader
(resp. the writer) process might change several times between the time the pro-
cess sends its message and the time it receives acknowledgments. We implicitly
assume here that the reader (resp. the writer) process keeps periodically con-
sulting the list of processes that are output by its failure detector module, and
stops waiting when the process has received acknowledgments from all processes
in the list.

Roughly speaking, the completeness property of the failure detector ensures
that, unless it crashes, the reader (resp. the writer) does not block waiting
forever for acknowledgments. The intersection property of the failure detector
(together with the use of timestamps) ensures that a reader would not miss a
value that was written.

6.1 Correctness

Proposition 6.1 The algorithm of Figure 3 implements a SWSR register with
Σ in any environment.

Proof. Remember that we assume a single writer, denoted by pw, and a single
reader, denoted by pr. Remark first that:
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1 Every process pi (including pw and pr) executes the following code:
2 Initialization:
3 current := ⊥
4 last write := −1

5 upon receive (WRITE,y, s) from the writer
6 if s > last write then

7 current := y
8 last write := s
9 send(ACK WRITE, s) to the writer

10 upon receive (READ, s) from the reader
11 send(ACK READ, last write, current, s) to the reader

12 Code for pw the (unique) writer:
13 Initialization:
14 seq := 0 /* sequence number */

15 procedure write(x)
16 send(WRITE, x, seq) to all

17 wait until received (ACK WRITE, seq)
from all processes trusted by the local failure detector module

18 seq := seq + 1
19 end write

20 Code for pr the (unique) reader:
21 Initialization:
22 rc := 0 /* reading counter */

23 function read()
24 rc := rc + 1
25 send(READ, rc) to all

26 wait until received (ACK READ, ∗, ∗, rc)
from all processes trusted by the local failure detector module

27 a := max{v | (ACK READ, v, ∗, rc) is a received message}
28 if a > last write then

29 current := v such that (ACK READ,a, v, rc) is a received message
30 last write := a
31 return(current)
32 end read

Figure 3: Implementation of a SWSR register.

(A) if pw has not terminated its k–th write (after line 17) then, at all processes,
the value of variable last write is less or equal to k.

Indeed, the last write is updated according to the value obtained from some
write operation: remember that we assume that no message can be received
unless it was sent. By the assumption that processes are sequential, the writer
does not begin its (k + 1)-th write operation before ending its k–th one.

Assume that the k–th write by pw is for value v. We have:

(B) At the time when a process stores k in its variable last write (line 8), the
value of its variable current is v.

From this we deduce the following:
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(C) If any process sends an (ACK READ, s, v, ∗) message, then v is the value
of the s-th write operation.

In particular (C) implies that for all (ACK READ, s, v, ∗), (ACK READ,
s′, v′, ∗) messages: s = s′ ⇒ v = v′.

Now we proceed to prove the properties of the SWSR register using (A), (B)
and (C) above:

Liveness: Assume by contradiction that pw is correct and pw invokes but does
not terminate its k–th write operation.

This is only possible if pw waits forever in line 17. From the complete-
ness property of the failure detector, there is a time τ after which the list L
of processes trusted by pw contains only correct processes. By the properties
of the communication channels, every correct process pi eventually receives the
(WRITE, ∗, k) message from pw. From (A), pi replies with a (ACK WRITE, k)
message and pw eventually receives (ACK WRITE, k) messages from all pro-
cesses within L –a contradiction.

A similar argument proves that, unless the reader crashes, every read oper-
ation invoked by the reader always terminates.

Validity: Let R be the j–th read operation invoked by the reader, let W be the
last write operation terminated before the beginning of R, and assume that W
is the k–th write of the writer. Such a write exists because we assume that even
initially, the default value of the register was written by pw.

The writer pw terminates this write operation (after line 17) after having
received (ACK WRITE, k) messages from a set Lw of trusted processes.

When the reader pr terminates its read operation R, pr has received (ACK-
READ, ∗, ∗, j) messages from a list Lr of trusted processes. By the intersection

property of the failure detector, at least one process pi belong to both Lw and
Lr.

As pi sends an (ACK READ, s, ∗, j) message to pr after having sent an
(ACK WRITE, k) message to pw, then s ≥ k. Hence, a, the maximum of v in
the (ACK READ, v, ∗, j) messages received by the reader pr for operation R
is such that a ≥ s ≥ k and then: (D) a ≥ k.

From (A), the a–th write has begun before read R has terminated, and by
(C) the value returned by R is the value of the a–th write.

Consider the two following cases:

• The read operation R is not concurrent with any write operation. Then,
from (A), (ACK READ, x, ∗, j) messages received by pr for R are such
that x ≤ k. From (D), we can deduce that a = k and the value returned
by R is the value of write W .

• The read is concurrent with some write. In this case, a ≥ k. The value
returned is either the value of write W or the value of some concurrent
write.
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Ordering: We need to show here that if the reader reads x, then reads y, then
the writer could not have written x after y.

Assume that the values of last write are respectively rx and ry, at the
reader, when it returns respectively x and y. From the algorithm, x is the
written value by the rx-th write and y is the written value by the ry-th write.
As last write is always non decreasing, we have ry ≥ rx, hence pw wrote y after
x.

The following corollary follows from Proposition 5.3 and Proposition 6.1.

Corollary 6.2 In any environment, Σ is the weakest failure detector class to
implement a register.

7 Consensus

We define below the class of failure detectors Σ × Ω, which we show is the
weakest to solve consensus in every environment. Failure detectors of this class
have range 2Π×Π. For every failure pattern, they output pairs of process sets, at
any time τ , and any process pi, such that the first set satisfies the completeness
and intersection properties of Σ and the second set satisfies the leader property
of Ω. (Clearly, this class is stronger than each of the classes Σ and Ω.)

7.1 The weakest failure detector class

The following corollary states that consensus can be implemented using fail-
ure detector class Σ × Ω (in every environment). Such implementation can be
achieved by first implementing registers out of Σ, and then consensus out of
registers and Ω [30]6:

Corollary 7.1 Σ × Ω implements consensus in every environment.

The following corollary follows from Corollary 6.2 and the fact that consensus
can be used to implement registers in every environment:

Corollary 7.2 Any failure detector class D that solves consensus in some en-
vironment, is stronger than Σ × Ω in that environment.

From the above two corollaries, we deduce the following one:

Corollary 7.3 Σ×Ω is the weakest failure detector class to implement consen-
sus in every environment.

6The resulting consensus is obviously not efficient as it first emulates a register and then
builds consensus on top it. More efficient algorithms (bypassing the register emulation) can
be obtained following the approach of [33].
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7.2 An interesting particular case

We show in the appendix that, in our system model with at least 3 processes,
Σ×Ω is strictly stronger than Σ in every environment Et with t > 0, and strictly
stronger than Ω in every environment Et with t ≥ n/2. In such environment, the
two classes Σ and Ω are indeed complementary. We also show that Σ×Ω � S.
So far, S was the weakest failure dectector among known failure dectectors that
implement consensus in any environment.

Interestingly, if we consider a system of n = 2 processes, failure detector
classes Σ and Ω are equivalent (we give the proof in the appendix). As a con-
sequence, Σ is in this case the weakest failure detector class for consensus. In
other words, among two processes communicating by message passing, solv-
ing consensus and implementing a register require the same information about
failures.

8 Reliable broadcast

(Uniform) reliable broadcast [22] (we omit the term uniform in the rest of the
paper) is a distributed computing abstraction that shares some similarities with
the register abstraction. In an asynchronous system with reliable message pass-
ing, both can be implemented only in environments with a majority of correct
processes. In such environments, they are in a precise sense equivalent 7.

In the following, we use our previous result on the weakest failure detector
class to implement a register, to show that a register is strictly stronger than
reliable broadcast in environments where at least half of the processes can crash.
We first recall the definition of reliable broadcast and we show to implement
it using registers. Then we show that the weakest failure detector class to
implement reliable broadcast [1] is strictly weaker than Σ in every environment
where at least half of the processes can crash.

8.1 Reliable broadcast with registers

The reliable broadcast abstraction is defined through two primitives, broadcast
and deliver, that the processes use to exchange messages. When a process
invokes the primitive broadcast with a message m as a parameter, we say that
the process broadcasts m; when a process returns from the invocation of deliver
with m as a parameter, we say that the process delivers m. Messages are
supposed to be uniquely identified. The broadcast and deliver primitives ensure
the following properties.

• Validity: If a correct process broadcasts a message m, then it eventually
delivers m.

7Remember that we consider by default the weak channel assumption. With a strong
channel assumption, reliable broadcast is trivial and can be implemented in every environment.
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• (Uniform) Agreement: If a process delivers a message m, then all correct
processes eventually deliver m.

• (Uniform) Integrity: For every message m, every process delivers m at
most once, and only if m was previously broadcast by sender(m).

Lemma 8.1 Register implements reliable broadcast in every environment.

Proof. We give a simple algorithm that use registers to implement the
primitives broadcast and deliver with the above properties of a reliable broadcast.
The idea of the algorithm is the following. The processes make use of n registers:
one per process. More precisely, every process pi in Π is associated with one
register, denoted by Regi. Process pi is the unique writer of register Regi but
all processes can read in all registers. In addition, every process pi maintains
the list of messages it has broadcast so far, denoted by bListi, as well as the list
of messages it has delivered so far, denoted by dListi.

• For a process pi to broadcast a message m, pi adds m to bListi, and then
writes bListi in Regi.

• Periodically, every process pi reads every register Regj and selects every
message m in bListj that pi did not deliver so far, i.e., every message m
that was not yet in dListi. Process pi then adds every selected message
m to dListi and delivers m.

We show below that this algorithm ensures the properties associated with a
reliable broadcast and recalled above.

1. Consider validity and assume that some correct process pi broadcasts a
message m. By the algorithm, and given that pi is correct, pi eventually
adds m to its list bListi and writes that list in Regi. From there on, any
value written in Regi contains message m; this is because pi will keep on
adding the messages to be broadcast to bListi and writing the new lists
in Regi. Given that pi is correct, pi eventually reads Regi and delivers m.

2. Consider now agreement. Let pi be any process that delivers a message
m and let pj be any correct process. For pi to deliver m, pi must have
read m from some register Regk. After this read, and by the atomicity
property of registers, any process that reads Regk reads a value bListk
that contains m. Process pj is correct and then eventually reads m and
delivers m.

3. Finally, consider integrity. Let pi be any process that delivers some mes-
sage m. Process pi can only do so if it did not deliver m before; remember
that pi maintains the list of delivered messages in dListi. Process pi must
have read m from the list bListk of some register Rk, written by pk. By the
atomicity property of the registers, process pk must has written bListk in
Regk with message m in bListk. By the algorithm, pk must have broadcast
m.
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8.2 A register is stronger than reliable broadcast

It was shown in [1] that the weakest failure detector class to implement reliable
broadcast is the class Θ. Failure detectors of this class output a list of processes
that are trusted to be up (just like our class Σ). For presentation simplicity,
we assume that after a process p crashes, its failure detector of Θ permanently
outputs all processes. Every failure detector of Θ ensures the two following
properties, for any failure pattern and any associated failure detector history
H :

• (Completeness): there is a time τ such that for every time τ ′ > τ , for
every correct process p: H(p, τ ′) contains only correct processes,

• (Accuracy): for every process p, for every time τ , H(p, τ) contains at least
one correct process.

Lemma 8.2 In any environment Et with t ≥ n/2, Σ is strictly stronger than
Θ.

Proof. It is obvious from the definitions of Θ and Σ that any failure detector of
Σ is also a failure detector of Θ: therefore Σ is stronger than Θ. We show in the
following that the converse is not true in any environment where at least half
of the processes can crash. The fundamental characteristic of such environment
is that we can partition the system into two subsets I and J such that all
processes in any of these subsets can crash in the same failure pattern. Then we
assume by contradiction the existence of an algorithm R that emulates, within
some distributed variable Trust, a failure detector of class Σ, using any failure
detector of class Θ.

Consider a failure detector D that, in any failure pattern where at least
one process from I (resp. J) is correct, output at all processes of I (resp. J),
the same correct process also from I (resp. J). In failure patterns where all
processes from I (resp. J) are faulty, D outputs at all processes, the same
correct process from J (resp. I). Clearly, D is of class Θ: no faulty process is
ever output and at least one correct process is always output at every correct
process. Consider the variable Trust emulated by algorithm R and consider a
failure pattern F where some process of I is correct, say pi, and this process
is the one output by D at pi, and similarly, some process of J is correct, say
pj , and this process is the one output by D at pj . Process pi (resp. pj) cannot
distinguish this failure pattern from the failure pattern where all processes in J
(resp. I) are faulty. Hence, to guarantee the completeness property of Σ, there
is a time at which D does not output any process from J (resp. I) at pi (resp.
pj), violating the intersection property of Trust.

9 Realistic failure detectors

So far we considered the original model of [6] according to which a failure detec-
tor is any function of the failure pattern: this enables for instance to make of our
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weakest failure detector result for consensus a strict generalization of [7]. The
original definition of [6] includes failure detectors (i.e., failure pattern functions)
that provide information about future failures.

In this section, we restrict our space to failure detectors as functions of the
“past” failure pattern. We first define the class R of realistic failure detectors
(those that cannot guess the future), which includes among others, failure de-
tectors of all classes we discussed so far, i.e., P , S, ♦S, Ω, and Σ. We illustrate
this notion through two simple examples. Then we consider the wait-free envi-
ronment where n − 1 processes can crash and we show that many distributed
programming abstractions, including register, consensus, reliable broadcast, as
well as terminating reliable broadcast [22] in a crash failure model which we
recall below) are equivalent (for any n).

9.1 Definition

Roughly speaking, we say that a failure detector is realistic if it cannot guess the
future. In other words, there is no time τ and no failure pattern F at which the
failure detector can provide information about crashes that will hold after τ in
F . More precisely, we define the class of realistic failure detector R, as the set
of failure detectors D that satisfy the following property for every environment
E :

• ∀(F, F ′) ∈ E ∀τ ∈ Φ s.t. ∀τ1 ≤ τ, F (τ1) = F ′(τ1), we have:

– ∀H ∈ D(F ), ∃H ′ ∈ D(F ′) s.t.: ∀τ1 ≤ τ, ∀pi ∈ Π : H(pi, τ1) =
H ′(pi, τ1).

Basically, a failure detector D is realistic if for any pair of failure patterns
F and F ′ that are similar up to a given time τ , whenever D outputs some
information at some time τ −k in F , D could output the very same information
at the same time in F ′. In other words, a realistic failure detector cannot
distinguish two failure patterns according to what will happen in the future.

9.2 Examples

We illustrate below our notion through two examples: the first is a failure
detector that is realistic, and actually constitutes the strongest (class) among
these, whereas the second one is a non-realistic failure detector.

9.2.1 The Scribe.

We describe here the Scribe failure detector C, which we show constitutes (as
a singleton) the strongest class among all classes of realistic failure detectors.
In short, failure detector C sees what happens at all processes at real time and
takes notes of what it sees. More precisely, in any failure pattern F , failure
detector C outputs, at any time τ , the list of values of F up to time τ : we
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denote this list by F [τ ]. More precisely, for each failure pattern F , C(F ) is the
singleton that contains the failure detector history H such that:

• ∀τ ∈ Φ, ∀pi ∈ Π, H(pi, τ) = F [τ ].

It is obvious to see that failure detector C is realistic. In fact, the singleton
{C} is the strongest among classes of realistic failure detectors. In other words,
given any realistic failure detector D, there is an algorithm A that transforms
C into D. Given that D is a realistic failure detector, for any failure pattern F ,
any process pi ∈ Π and any time t ∈ Φ, the output of D is a function D(F [τ ])
of F [τ ]. For any failure pattern F , any process pi ∈ Π and any time τ ∈ Φ, the
transformation algorithm A simply takes F [τ ] (i.e., the output of C at pi and
τ), and transforms it into D(F [τ ]).

9.2.2 The Marabout.

Consider failure detector M (Marabout), defined in [18]. This failure detector
outputs a list of processes. For any failure pattern F and at any process pi, the
output of the failure detector M is constant: it is the list of faulty processes
in F , i.e., M outputs the list of processes that have crashed or will crash in F .
Clearly, M is not realistic: it does not belong to the set R. To see why, consider
failure patterns F and F ′ such that:

1. In F1, all processes are correct, except p1 which crashes at time 10.

2. In F2, all processes are correct.

Consider H2, any history in M(F2). By the definition of M, the output at
any process and any time of H2 is ∅. Consider time T = 9. Up to this time, F1

and F2 are the same. If M was realistic, M would have had a failure detector
history H1 in M(F1) such that H2 and H1 are the same (at any process) up to
time 9. This is clearly impossible since for any history H1 ∈ M(F1), for any
process pi, and any time τ ∈ Φ, H1(pi, τ) = {p1}. As observed in [18], the class
M and the class P are incomparable. In short, M is accurate about the future
whereas P is accurate about the past.

9.3 k-Perfect failure detectors

We define here the generic class Pk, of k-Perfect failure detectors, where 0 ≤
k ≤ n, which we show is the weakest to implement a register in environment
Ek . This class is generic in the sense that its semantics depend on the value of
the integer k. Failure detectors of class Pk output, at each process p and each
time τ , a list of suspected processes Pk(p, τ) (i.e., the range of Pk is 2Π). These
failure detectors ensure strong completeness as well as the following k-accuracy
property: at any time τ , no process suspects more than n−k−1 processes that
are alive at time τ . More precisely:

• k- Accuracy: ∀p ∈ Π, ∀τ ∈ Φ |Pk(p, τ) \ F (τ)| ≤ max(n − k − 1, 0).

30



For k ≥ n − 1, processes do not make false suspicions and Pk is in P . For
k < n−1, processes can make false suspicions and can even permanently disagree
on the processes they falsely suspect. To better illustrate the behaviour of a k-
Perfect failure detector, consider a system of 5 processes {p1, p2, p3, p4, p5} and
the case k = 2. The failure detector should eventually suspect permanently all
crashed processes and should not falsely suspect more that 2 processes at every
process. Consider a failure pattern where p1 and p2 crash. It can be the case
that after some time τ , p3 permanently suspects {p1, p2, p4, p5}, p4 permanently
suspects {p1, p2, p3, p5}, and p5 permanently suspects {p1, p2, p3, p4}. It can also
be the case that after some time τ , p5 forever alternately suspects {p1, p2, p3}
and {p1, p2, p4}.

Given a failure detector class X , we denote by X r = X ∩R the realistic part
of X . Clearly, Pr, Sr, ♦Sr , Σr and Θr are all non-empty. Given any failure
detector classes X , Y , such that X r and Yr are not empty if ¬(X r � Yr) then
¬(X � Y). Moreover, if X � Y then X r � Yr.

Interestingly, in the realistic case, we end up with another characterization
of the weakest failure detector class to implement a register [9]:

Proposition 9.1 For any t < n, P t is the weakest realistic failure detector
class to implement a register in environment Et

In other words, for every t, failure P t is equivalent to Σr in environment Et.
Furthermore, in any environment Σ � P t (We prove these in the appendix).
Althought, one might notice here that failure detector class P t does not satisfy
directly the intersection property of Σ.

9.4 The wait-free environment

Interestingly, in the realistic case, and considering the wait-free environment,
most of the failure detector classes we have considered are equivalent:

Proposition 9.2 In the wait-free environment, Θr, Σr, Sr, and Pr are all
equivalent.8

As a direct consequence, in the realistic case and assuming a wait-free
environment, register, consensus, reliable broadcast and terminating reliable
broadcast are all equivalent. We show below that these are also equivalent in
this case to another distributed programming abstraction: terminating reliable
broadcast[22].

In this problem, a specific process (called the initiator) is supposed to broad-
cast a message. The processes are supposed to deliver that message but can

8The situation is different concerning ♦S. In the wait free-environment, ♦S is not sufficient
to implement consensus. If the environment is not wait free Θr × ♦S is not sufficient to
implement consensus. In such environment, Pt×♦S is strictly weaker than Sr. To summarize:
In Et, with n/2 < t < n − 1, we have: Θr × ♦S ≺ Σr × ♦S ≺ Sr From this, we deduce that
if the environment is not wait-free, the previous equivalences do not hold and inequalities are
strict: In Et with n/2 < t < n − 1 we have: Θr ≺ Σr ≺ Sr ≺ P .
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deliver a specific value nil if the sender process has crashed [22]. We actually
consider a general variant of the problem where every process is a potential
initiator of the broadcast. We denote by (i, k) the k’th instance of the problem
where the initiator of the broadcast is pi. Instance (i, ∗) is defined with the
following properties: (1) validity if a correct process pi broadcasts a message
m, then pi eventually delivers m, (2) agreement if a process delivers a message
m, then every correct process delivers m; and (3) integrity if a process delivers
a message m and pi is correct, then sender(m) = pi. We state and show here
that if we do not restrict the number of faulty processes and consider realistic
failure detectors, the weakest failure detector class to solve terminating reliable
broadcast is P .

Proposition 9.3 In the wait-free environment, the weakest realistic failure de-
tector class for terminating reliable broadcast is Pr.

Proof (sketch): (1. Sufficient condition.) It is easy to see that any Perfect
failure detector, solves the terminating reliable broadcast problem. When ex-
ecuting instance (k, k′) of the problem, every process that suspects pk delivers
nil. Otherwise, pi waits for pk’s message. (2. Necessary condition.) Let A
be any terminating reliable broadcast algorithm using D. It is easy to see how
we can emulate out of D a failure detector of class Pr in a distributed vari-
able output(P). Whenever a process pj delivers nil for an instance (i, ∗) of the
problem, pj adds pi to output(P)j . Any process that crashes will eventually be
permanently added to output(P) at every correct process: strong completeness
will hence be ensured. Let pi be any process that is added to output(P)j at
some time t. This can only be possible if pi is faulty. Since we assume here that
D is realistic, then pi must have crashed by time t, ensuring also strong validity.
�

10 The impact of uniformity

We considered throughout the paper the uniform variant of consensus: no two
processes should disagree on the decision, even if any of them has crashed. An
alternative variant is the correct-restricted one [36], where two processes can
decide differently, as long as one of them is faulty. Although this might not
make any sense in practice (before crashing, a process can give an inconsistent
output to the application), studying this variant is theoretically interesting. In
fact, Σ×♦S is not the weakest for correct-restricted consensus. Indeed, consider
the class of Partially Perfect failure detectors, denoted by P<, and introduced
in [15]. Failure detectors of this class output, at any time τ and at any pro-
cess p, a list of processes suspected by p at time τ , and satisfy the following
properties: (1) the strong accuracy property of P and (2) the following partial
completeness property: if a process pi crashes, then eventually every correct
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process pj such that j > i permanently suspects pi.
9 There is an algorithm

given in [15] that implements correct-restricted consensus with P< in any en-
vironment. Furthermore, in any environment where half of the processes can
crash, P< is clearly not stronger than Σ. As a consenquence, Σ×♦S is thus not
the weakest for correct-restricted consensus. This somehow conveys a funda-
mental difference between correct-restricted consensus and uniform consensus:
the former is strictly weaker than the latter.

In fact, it is interesting to notice that correct-restricted consensus cannot
even implement a register in a message passing system.
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11 Appendix

11.1 Comparison between failure detectors classes

In this section we prove some reductions between failure detector classes. These
reductions are summarized in Figure 5.

Remember first that if X and Y are failure detectors, X � Y means that
there is a reduction algorithm from Y to X . If C1 and C2 are failure detector
classes then C1 � C2 means that for every X ∈ C1, there exists Y ∈ C2 such that
X � Y .

Proposition 11.1 Σ can be implemented in any environment with a majority
of correct processes.

Proof. The algorithm of Figure 4 emulates, within variable Output the behavior
of a failure detector of Σ.

By an easy induction, as the number of faulty processes is strictly less than
n/2, no correct process waits forever in line 6 and therefore rp is unbounded for
any such process. Consider failure pattern F , we prove:

1. Completeness: In F , let p be a correct process and q be a faulty process.
As q is faulty, there exists a time after which q is crashed. Therefore q
sends a finite number of (I AM ALIV E, ∗) messages. Let x be such that
(I AM ALIV E, x) is the last message (I AM ALIV E, ∗) sent by q. Let
τ be the time for which variable rp is greater than x. After time τ , q does
not belong to Outputp.

2. Intersection: As t is less than n/2, for all p, Outputp contains at least
d(n + 1)/2e processes. As a consequence, there is always at least one
process that is both in Outputp and in Outputq.

Proposition 11.2 For En−1 and n = 2, Σ is equivalent to S.

Proof. Denote by p1 and p2 the two processes in the system. Consider any run
R of this system (equipped with a failure detector of Σ). If no process crashes in
R, then by the intersection property of Σ one correct process is trusted forever
by p1 and p2. If some process, say p1 crashes, then by the completeness property
of Σ, after some time τ , p2 is the only process trusted by p2. By intersection
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1 Every process p executes the following code:
2 Initialization:
3 r:=0
4 Task 1:
5 repeat forever

6 send(ARE Y OU ALIV E, r) to all

7 wait until receive (I AM ALIV E, r) from n − t processes

8 Outputp:={q | a message (I AM ALIV E, r) from q received by p }
9 /* Outputp is the output for p of the failure detector A */
10 r:=r+1
11 Task 2:
12 upon receive (ARE Y OU ALIV E, x) from q

13 send(I AM ALIV E, x) to q

Figure 4: Implementation of A in environment E ⊆ Et

property of Σ p2 has been trusted forever by p1. Therefore, in all cases, at least
one correct is never suspected. This proves the accuracy property of S.

Figure 5 summarizes our reductibility results.

Proposition 11.3 In every environment:

(1) S � P

(2) Σ × Ω � S

(3) Σ � Σ × Ω

(4) Ω � Σ × Ω

(5) Θ � Σ

In environments Et such that 0 < t < n/2:

(6) Σ � Ω

(7) Σ � Θ

(8) Σ × Ω � Ω

For n = 2 and 0 < t < 2:

(9) S � Σ and Σ � S

Proof.

(1) follows directly from the definitions
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P

ΩΣ

Θ

S

Σ × Ω

is stronger in environments such that t > n/2

is stronger in all environments

Figure 5: Reductions between classes

(2) follows from the fact that Σ × Ω is the weakest failure detector to im-
plement consensus in every environment and S implements consensus in
every environment

(3) and (4) are trivial

(5) follows from the completeness property of Σ; after some time, the output of
a failure detector in Σ contains only correct processes, by the intersection
property, every output of Σ contains at least one correct process.

(6), (7) and (8) follow directly from Proposition 11.1

(9) follows directly from Proposition 11.2

11.2 Comparison between realistic failure detectors

Remark first that, clearly, the behaviour of an algorithm is in some sense re-
alistic. More precisely, let A be an algorithm using a realistic failure detector
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R. Consider F and F ′ two failure patterns such that F and F ′ are identical
up to time τ , and a run R = 〈F, H, I, S, T 〉 of A for F with H ∈ R(F ). As R
is realistic, there is some failure detector history H ′ ∈ R(F ′) identical to H up
to time τ . Hence, there is a schedule S ′ identical to S up to time τ such that
R′ = 〈F ′, H ′, I, S′, T 〉 is a run of A. Therefore, there is a run R′ identical to R
up to time τ for the failure pattern F ′. Applying this to reduction algorithms
we get:

Proposition 11.4 Let X be a realistic failure detector and A a reduction algo-
rithm, then the image of X is realistic.

Then:

Corollary 11.5 Let A and B be any two classes of failure detectors, if A � B
then Ar � Br.

Therefore all the relations between failure detectors of Figure 5 hold also for the
realistic part of these classes.

Figure 6 summarizes our reducibility results in the realistic case.

is stronger in Et such that t > n/2

is stronger in environments Et

Σr Ωr

Σr × Ωr

Sr

Pr

Pt Θr

Figure 6: Reductions between classes: the realistic case
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We prove here that in every environment Et, Pt can be reduced to Σ.10

1 task 1:
2 for r = 1, . . . do

3 X1 = Π − P t

4 send (PING, r, p) to all

5 wait until receiving (PONG, r, q) from n − t processes
6 X2 := {q ∈ Π|(PONG, r, q) received by p}
7 Output = X1 ∪ X2 /* failure detector output */

8 task 2:
9 upon receive(PING, r, q)send (PONG, r, p) to q

task 1 || task 2

Figure 7: From P t to Σ

Proof.

Recall the definition of P t: Pt gives a list of suspected processes that (1)
ensures the completeness and (2) at each time τ , |P t(p, τ) \ F (τ)| ≤ max(n −
t − 1, 0).

As, there is at most t dead processes, line 5 does not block, and eventually
X2 contains only correct processes. From this and the completeness of P t we
deduce the completeness of the emulated failure detector.

Consider now the intersection property. Let p1 ∈ Π and p2 ∈ Π (possibly
p1 = p2) and let r1-th (resp. the r2-th) be the iteration of task 1 of p1 (resp.
p2). In the following we only consider the r1-th iteration for p1 and the r2-th
iteration of r2, hence Vpi

where i = 1 or i = 2 will denote the value of variable
V of pi at the end of the ri-th iteration. For example, Outputp2

is the output
of the emulated failure detector for p2 at the end of the r2-th iteration of task
1.

Let τ1 (resp. τ2) the time at which p1 (resp. p2) sets variable X1 in the
r1-th (resp. r2-th) iteration with the output of its failure detector P t. Assume
without loss of generality that τ1 ≤ τ2.

In the following + denotes the disjoint union.
Given any time τ , let A(τ) denote the set of process alive at time τ : A(τ) =

Π − F (τ).
As τ1 ≤ τ2 we have:

A(τ2) ⊆ A(τ1) (1)

As X2p2
contains only identities of processes that have answered to the PING

message from p2 in the r2-th iteration, we have: X2p2
⊆ A(τ2). From (1), we

get:
X2p2

⊆ A(τ2) ⊆ A(τ1) (2)

10This was shown indirectly in [10], where we proved that Pt is the weakest failure detector
class to implement a register in the realistic case.
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Consider Pt(p1, τ1) and let PA be Pt(p1, τ1) ∩ A(τ1). By definition of P t,
|PA| ≤ max(n− t−1, 0). Then every alive process p ∈ A(τ1) belongs to PA or to
Π−Pt(p1, τ1). Moreover, PA ∩ (Π−Pt(p1, τ1)) = ∅. As X1p1

= Π−Pt(p1, τ1)
we get:

A(τ1) ⊆ X1p1
+ PA

From (2):
X2p2

⊆ A(τ2) ⊆ A(τ1) ⊆ X1p1
+ PA

As |X2p2
| = n−t and |PA| < max(n−t, 1), there is at least one q ∈ X2p2

∩X1p1
.

This proves Outputp2
∩ Outputp1

6= ∅.
Reciprocally:

Proposition 11.6 For any environment Et (0 < t < n): Pt � Σr

Proof. In fact, we prove that any realistic failure detector in Σ is in Pt.
The completeness property is ensured for all failure detectors in Σ.
Let X be a realistic failure detector in Σ. Assume by contradiction that the

properties of Pt are not ensured by X . Let F be a failure pattern in Et and H a
failure detector history H ∈ X (F ), such that at some time τ , strictly more than
n − t − 1 processes in the set of alive processes V at this time τ are suspected.
This means that a set E of at least n− t alive processes are suspected. Consider
F ′ identical to F , up to time τ , and then all processes but processes in E crash.
As X is realistic, there is a failure detector history for F ′ that is identical up
to time τ to F . From the completeness property of Σ, after some time τ ′, only
processes in E are not suspected for F ′. But V ∩ E = ∅, contradicting the
intersection property.

Then we get:

Proposition 11.7 For any environment Et, Pt and Σr are equivalent.

11.3 Impossibility results

In this section we give some impossibility results about failure detector reduc-
tions. These results prove that some classes are incomparable or that some
classes are strictly stronger than others.

Before proving the impossibility results, we first give a technical lemma about
the limit of runs. Given two runs R = 〈F, H, C, S, T 〉 and R′ = 〈F ′, H ′, C, S′, T ′〉,
we say that R and R′ are identical up to m if for all m′ ≤ m : H(m′) = H ′(m′),
S(m′) = S′(m′) and T (m′) = T ′(m′). By extension, we say that R and R′ are
identical up to time τ , if R and R′ are identical up to n for some m such that
T (m) ≥ τ . Note that if R and R′ are identical up to time τ , then up to time τ ,
the two runs are indistinguishable for all processes that are alive.

Lemma 11.8 Let A be any algorithm using some failure detector X . Let R =
〈F, H, C, S, T 〉 be any run such that:

1. for all m ∈ N there is m′ > m and a run Rm′ of algorithm A for X
identical to R up to m′
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2. in S every correct process takes an infinity of steps

3. every message sent in R is received in R

4. H ∈ X (F )

Then R is a run of algorithm A for the failure detector X .

Proof. As R is identical, up to m, to some run Rm′ of algorithm A, for all
m′′ < m, S(m′′ + 1) is applicable to S[m′′]C, and S[m′′] is a step of a process
p /∈ F (T [m]). Then, by an easy induction, S is applicable to C and for all m,
S(m) is a step of a process p /∈ F (T [m]). Then condition (2), (3) and (4) of the
lemma ensure that R is a run of algorithm A.

Concerning the realistic part of Σ. In the following proof we consider failure
detector Z defined as follows: Z outputs either a set of n − 1 processes or
the set of alive processes; moreover Z ensures the completeness property of Σ.
More formally, Z is the failure detector such that for every failure pattern F ,
H ∈ Z(F ) if and only (i) for all p at each time τ H(p, τ) is either a subset of
n − 1 processes or the set of alive processes at time τ and (ii) there is a time
τ ′ such that after time τ ′, H(p, τ ′) is included in the set of processes that are
alive at time τ ′.

Lemma 11.9 If t < n − 1 and n > 2 then Z ∈ Σr

Proof. Z is clearly realistic. As t < n − 1, in every subset of n − 1 processes,
there is at least one correct process. Let F be any failure pattern such that
H ∈ Z(F ). Consider H(p, τ) and H(p′, τ ′), we distinguish the following cases:

• H(p, τ) and H(p′, τ ′) are both sets of alive processes, assume without loss
of generality that τ < τ ′ then H(p, τ) ⊆ H(p′, τ ′).

• H(p, τ) and H(p′, τ ′) are subsets of n−1 processes, then clearly H(p, τ)∩
H(p′, τ ′) 6= ∅.

• One of them, say H(p, τ), is a subset of n−1 processes and the other one,
H(p′, τ ′) is the set of alive processes at time τ ′. As t < n − 1, then there
is at least one correct process in H(p, τ) and this process is in H(p′, τ ′),
proving that H(p, τ) ∩ H(p′, τ ′) 6= ∅.

Hence the intersection property is ensured. The completeness property is en-
sured by the definition of Z itself.

Proposition 11.10 In every environment Et, there is no reduction from Σ to
Ω. Moreover in the realistic case, if t < n − 1, then there is no reduction in Et

from Σr to Ω.

Proof. In the following failure pattern ∅ denotes the failure free pattern where
no process crashes.
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Recall that n > 2 and that we consider only environments Et with 0 < t < n.
With Ω, at each time τ , each process p trusts only one process that is called

the leader for p at time τ . The properties of Ω ensure that for each run there
is a time after which every correct process has the same leader and this leader
is a correct process.

By contradiction assume that there exists a reduction algorithm A from Σ
to Ω.

Let Rp
τ = 〈∅, H, C, S, T 〉 be a run of A in which H is a failure detector history

of Σ such that, after time τ , all processes but p are trusted forever by all other
processes, then we have:

Lemma 11.11 For every such run Rp
τ = 〈∅, H, C, S, T 〉 of A, there exists a run

R′
τ = 〈∅, H, C, S′, T 〉 of A and a time τ ′ > τ such that p is not leader for some

correct process at time τ ′.

This lemma means that, in some way, the leader must be chosen among the
trusted processes.
Proof. (of lemma) Consider a run R = 〈F, H, C, S, T 〉 of A that is identical to
Rp

τ , up to time τ , such that in F , all processes but p are correct and p crashes at
time µ > τ . As R is a run of A, there is some time τ ′ > µ such that p is not the
leader for some correct process q. Let R′ = 〈∅, H, C, S′, T 〉 be a run identical to
R up to time µ (in R′′ all messages sent by p are delayed until after time τ ′).
For q, R and R′ and indistinguishable until time τ ′, and hence at time τ ′, p is
not leader for at least one correct process.

Now consider the sets Ei = Π−{pi}. All failure detector histories we consider
here will output at each time, and for each process, one of the sets Ei. Clearly,
as n > 2, these failure detector histories ensure the intersection property of Σ.

We construct by induction a strictly increasing infinite sequence of times
(τi)i∈N and an infinite sequence of runs (Ri = 〈∅, Hi, Si, I, T 〉)i∈N of A such
that for all i:

(Q1) for any p, for any time τ : Hi(p, τ) = Ej for some j

(Q2) p1+i mod n is not leader for some correct process at time τi ∈ Ri

(Q3) if i > 0 then Ri and Ri−1 are identical up to time τi−1

(Q4) if i > 0 then every message sent by time τi−1 in Ri is received by time τi

and, between time τi−1 and time τi, every process makes at least one step

• (basis: i = 0) Let R′
0 = 〈∅, H0, C, S′

0, T 〉 be any run of A such that for all
τ and all p H0(p, τ) = E0.

By the previous lemma, there is a run R0 = 〈∅, H, C, S0, T 〉 of A such that
at some time τ0, p1 is not leader for some correct process.

(Q1) and (Q2) are ensured by construction, (Q2) and (Q4) are trivially
verified.
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• (induction: i > 0) Assume we have Ri and τi verifying (Q1), (Q2), (Q3)
and (Q4).

Consider Ri = 〈∅, Hi, C, Si, T 〉, there is a time τ ′ > τi such that by time
τ ′ every message sent before τi is received and each process takes at least
one step between τi and τ ′.

Let R′ = 〈∅, Hi+1, C, S′, T 〉 be a run of A identical to Ri up to time τ ′,
but after time τ ′, Hi+1 outputs always E1+(i+1) mod n. By the previous
Lemma, there is a run Ri+1 = 〈, ∅, Hi+1, C, Si+1, T 〉 identical to R′ up
to time τ ′ such that, at time τi+1 > τ ′, pi+1 mod n is suspected by some
correct process.

clearly (Q1), (Q2), (Q3) and (Q4) hold for i.

Let Rlim = 〈∅, Hlim, C, Slim, T 〉 be the limit of the runs Ri that is for all i,
Rlim and Ri are identical up to time τi.

As by (Q1) the output of failure detectors in Rlim is always one of the Ei,
Hlim ∈ Σ(∅). Then from (Q3), (Q4) and Lemma 11.8, Rlim is a run of A.

By (Q2) every process in Π is infinitely often not a leader for at least one
correct process, contradicting the property of Ω.

Consider the realistic case: every failure detector history considered so far in
the proof are in Z . Hence, from Lemma 11.9, if t < n− 1, there is no reduction
from Σr to Ω.

Proposition 11.12 In every environment Et (0 < t < n and n > 2) Σ × Ω is
strictly weaker than S. Moreover, if t < n − 1, Σr × Ωr is strictly weaker than
Sr.

Proof. As in any environment, Σ × Ω is the weaker failure detector class to
solve consensus and, in any environment, consensus can be solved with S, then
Σ × Ω � S and by Corollary 11.5 Σr × Ωr � S.

Now, we prove that there is no reduction from Σ×Ω to S. For this, consider
any environment Et with 0 < t < n and n > 2. In such an environment, for
each run at least one process is correct and we have at least three processes.

By contradiction, assume that there exists a reduction algorithm A such
that for each failure pattern F ∈ Et and failure detector history H ∈ Σ×Ω(F ),
outputs a failure detector history HS ∈ S(F ).

In the following, if R = 〈F, (H1, H2), C, S, T 〉 is a run of a reduction algo-
rithm A, the failure detector history in S(F ) output by this run is denoted by
A(R)

Consider the following finite sequence of runs Ri (0 ≤ i ≤ n) and sequence
of times τi (0 ≤ i ≤ n) such that for all i < n:

if i > 0 then Ri identical up to time τi−1 to Ri−1 (3)

pi is suspected by all alive processes at time τi in A(Ri) (4)
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• (basis) In failure pattern F0, p0 crashes at time 0 and no other process
crashes; in run R0 = 〈F0, (H

0
0 , H1), C, S0, T 〉, for H0

0 every alive process
trusts all processes in Π but p0.

By the completeness property of S, there is a time τ0 after which, in A(R0),
p0 is suspected by all processes.

(3) is trivially verified and (4) is true by construction.

• (induction step) (0 ≤ i < n)

Assume that we have built Ri = 〈Fi, (H
0
i , H1

i ), C, Si, T 〉 and τi:

Then Ri+1 = 〈Fi+1, C, (H0
i+1, H

1
i+1), Si+1, T 〉 a run of A such (1) that Ri

and Ri+1 are identical up to time τi and (2) at time τ ′ > τi pi+1 crashes
and no other process crashes and (3) after time τ ′ in H0

i+1 every process
trusts forever every process in Π − {pi+1} and (4) H1

i+1 ∈ Ω(Fi+1).

Remark that in Ri+1 only process pi+1 is not correct.

By an easy induction, we deduce that at each time τ for H0
i+1 every process

p trusts H0
i+1(p, τ) a subset of n− 1 processes. As n > 2, then for all τ, τ ′

and all p, p′ H0
i+1(p, τ) ∩ H0

i+1(p
′, τ ′) 6= ∅ proving that H0

i+1 ∈ Σ × Ω and
hence Ri+1 is a run of A.

By construction (3) and (4) are true.

Up to time τi, Ri+1 and Ri are indistinguishable for all processes but pi+1.
Then, pi being suspected by every other process at time τi in A(Ri) is also
suspected at time τi in A(Ri+1). This proves (4). By the completeness of S
there is a time τi+1 > τ ′ after which pi+1 is suspected by all alive processes.

Consider Rn = 〈Fn, (H0
n, H1

n), C, Sn, T 〉, Rn is a run of A. By an easy
induction and (3), for all 0 ≤ i < n, Rn−1 and Ri are identical up to time
τi. Hence from (4) in A(Rn−1), each process pi in Π is suspected at time τi,
contradicting the accuracy property of S.

Concerning the realistic case, remark that all failure detectors histories H0
i

are in Z , then there is no reduction from Z×Ω and therefore no reduction from
the Σr × Ωr to S.

Proposition 11.13 There is no reduction:

(1) From S to P in any environment Et such that 0 < t < n

(2) From Ω to S in any environment Et such that 0 < t < n

(3) From Σ to Ω in any environment Et such that 0 < t < n and n > 2

(4) From Σ to S in any environment Et such that 0 < t < n and n > 2

(5) From Ω to Σ in any environment Et such that n/2 ≤ t < n

(6) From Σ × Ω to S in any environment Et such that 0 < t < n and n > 2

(7) From Ω to Σ × Ω in any environment Et such that n/2 ≤ t < n
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Θ

no reduction in environments such that t > n/2

S

Σ × Ω

no reduction in all environments

Figure 8: No reduction between classes

(8) From Σ to Σ × Ω in any environment Et for 0 < t < n and n > 2

(9) From Θ to Σ in any environment Et such that n/2 ≤ t < n

Proof.

• (1) and (2) from [6] and [7]

• (3) from Proposition 11.10

• (4) As Ω � S, if S � Σ, we would have Ω � Σ contradicting (3)

• (5) Recall that in environment Et with n/2 ≤ t < n, Ω is not sufficient to
implement Consensus [6].

If Ω were reducible to Σ in an environment Et (n/2 ≤ t < n) then Ω could
be reducible to Σ × Ω, and then Consensus could be solvable with Ω in
such an environment –a contradiction.

• (6) From Proposition 11.12

• (7) If there were a reduction from Ω to Σ × Ω in environments Et such
that n/2 ≤ t < n, we would get a reduction from Ω to Σ contradicting (5)
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• (8) If there were a reduction from Σ to Σ × Ω in environments Et for 0 <
t < n, then we would have a reduction from Σ to Ω in such environments
contradicting (6)

• (9) Lemma 8.2

P

ΩΣ

Θ

S

Σ × Ω

A

A

no reduction from A to B in environments such that t < n − 1

no reduction from A to B in envrironemts such that t < n/2

B

B

Figure 9: No reduction between classes: the realistic case

11.4 The wait free case

Proposition 11.14 In any environment Et with t = n− 1: Θr, Σr, Sr and Pr

are all equivalent.

Proof. As by Corollary 11.5 and Proposition 11.3 Θr � Σr � Sr � Pr, we
only prove that: Pr � Θr.

For this, in fact, we prove that, in En−1, every failure detector X in Θr is in
Pr:

• The completeness property is ensured by definition,

47



• Assume by contradiction that the accuracy property is not ensured, then
there is a failure pattern F and a failure detector history H of X (F ) such
that at some time τ , a process that is alive, say p is suspected by some
process q. Then consider the failure pattern F ′ identical to F up to time
τ , but after time τ all processes but p crash. As X is realistic, there is
a failure detector history H ′ of X (F ′) such that H and H ′ are identical
up to time τ . But, then at time τ , p, the only correct process of F ′ is
suspected by q –a contradiction.
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