
Eventual Leader Election with Weak Assumptions on
Initial Knowledge, Communication Reliability, and Synchrony

Antonio FERNÁNDEZ
�

Ernesto JIMÉNEZ
�

Michel RAYNAL ��
LADyR, GSyC, Universidad Rey Juan Carlos, 28933 Móstoles, Spain�

EUI, Universidad Politécnica de Madrid, 28031 Madrid, Spain

� IRISA, Université de Rennes, Campus de Beaulieu 35 042 Rennes, France

anto@gsyc.escet.urjc.es ernes@eui.upm.es raynal@irisa.fr

Abstract

This paper considers the eventual leader election prob-
lem in asynchronous message-passing systems where an ar-
bitrary number � of processes can crash (����� , where � is
the total number of processes). It considers weak assump-
tions both on the initial knowledge of the processes and on
the network behavior. More precisely, initially, a process
knows only its identity and the fact that the process iden-
tities are different and totally ordered (it knows neither �
nor �). Two eventual leader election protocols are present-
ed. The first protocol assumes that a process also knows the
lower bound � on the number of processes that do not crash.
This protocol requires the following behavioral properties
from the underlying network: the graph made up of the
correct processes and fair lossy links is strongly connect-
ed, and there is a correct process connected to �
	�� other
correct processes (where � is the actual number of crash-
es in the considered run) through eventually timely paths
(paths made up of correct processes and eventually timely
links). This protocol is not communication-efficient in the
sense that each correct process has to send messages for-
ever. The second protocol is communication-efficient: after
some time, only the final common leader has to send mes-
sages forever. This protocol does not require the processes
to know � , but requires stronger properties from the under-
lying network: each pair of correct processes has to be con-
nected by fair lossy links (one in each direction), and there
is a correct process whose output links to the rest of correct
processes have to be eventually timely. This protocol enjoys
also the property that each message is made up of several
fields, each of which taking values from a finite domain.

1 Introduction
Leader oracle: motivation Failure detectors [4, 23] are
at the core of a lot of fault-tolerant protocols encountered in
asynchronous distributed systems. Among them, the class

of leader failure detectors is one of the most important.
This class, usually denoted , is also called the class of
leader oracles. When clear from the context, the notation
 will be used to denote either the oracle/failure detector
class or an oracle of that class. An oracle provides the
processes with a leader primitive that outputs a process id
each time it is called, and satisfies the following eventual
leadership property: eventually all its invocations return the
same id, that id being the identity of a correct process (a
process that does not commit failures). Such an oracle is
very weak. This means that a correct leader is eventually
elected, but there is no knowledge on when this common
leader is elected; moreover, several leaders (that can be
correct processes or not) can possibly co-exist before this
occurs.

The oracle class has several noteworthy features. A
fundamental one lies in the fact that, despite its very weak
definition, it is powerful enough to allow solutions to funda-
mental problems such as the consensus problem [5]. More-
over, it has even been shown that it is the weakest class
of failure detectors that allows that problem to be solved
(assuming a majority of correct processes) [5]1. The live-
ness property of the well-known Paxos algorithm is based
on such a leader oracle [12]. Other leader-based consensus
protocols can be found in [10, 19].

Another major feature of lies in the fact that it
allows the design of indulgent protocols [9]. Let � be an
oracle-based protocol that produces outputs, and ��� be the
safety property satisfied by its outputs. � is indulgent with
respect to its underlying oracle if, whatever the behavior
of the oracle, its outputs never violate the safety property
��� . This means that each time � produces outputs, they
are correct. Moreover, � always produces outputs when

1Let us remind that, while consensus can be solved in synchronous
systems despite Byzantine failures of less than one third of the processes
[13], it cannot be solved in asynchronous distributed systems prone to even
a single process crash [8].

the underlying oracle meets its specification. The only case
where � can be prevented from producing outputs is when
the underlying oracle does not meet its specification. (Let
us notice that it is still possible that � produces outputs
despite the fact that its underlying oracle does not work
correctly.) Interestingly, is a class of oracles that allows
designing indulgent protocols [9, 10].

Unfortunately, cannot be implemented in pure asyn-
chronous distributed systems where processes can crash.
(Such an implementation would contradict the impossibility
of solving consensus in such systems [8]. A direct proof of
the impossibility to implement in pure crash-prone asyn-
chronous systems can be found in [20].) But thanks to in-
dulgence, this is not totally bad news. More precisely, as
 makes it possible the design of indulgent protocols, it is
interesting to design “approximate” protocols that do their
best to implement on top of the asynchronous system it-
self. The periods during which their best effort succeeds
in producing a correct implementation of the oracle (i.e.,
there is a single leader and it is alive) are called “good”
periods (and then, the upper layer -based protocol pro-
duces outputs and those are correct). During the other peri-
ods (sometimes called “bad” periods, e.g., there are several
leaders or the leader is a crashed process), the upper lay-
er -based protocol never produces erroneous outputs. The
only bad thing that can then happen is that this protocol can
be prevented from producing outputs, but when a new long
enough good period appears, the upper layer -based pro-
tocol can benefit from that period to produce an output.

The main challenge of asynchronous fault-tolerant dis-
tributed computing is consequently to identify properties
that are at the same time “weak enough” in order to be sat-
isfied “nearly always” by the underlying asynchronous sys-
tem, while being “strong enough” to allow to be imple-
mented during the “long periods” where they are satisfied.

Related work The very first implementations of in
crash-prone asynchronous distributed systems considered a
fully connected communication network where all links are
bidirectional, reliable and eventually timely (i.e., there is a
time ��� after which there is a bound � -possibly unknown-
such that, for any time ������� , a message sent at time � is
received by time �����) [14].

This “eventually timely links” approach has been refined
to obtain weaker constraints. It has been shown in [1] that
it is possible to implement in a system where commu-
nication links are unidirectional, asynchronous and lossy,
provided there is a correct process whose output links are
eventually timely. The corresponding protocol implement-
ing is not communication-efficient in the sense that it re-
quires that all the correct processes send messages forever.
It is also shown in [1] that, if additionally there is a correct

process whose input and output links are fair lossy, it is pos-
sible to design a communication-efficient protocol (i.e., a
protocol that guarantees that, after some time, only one pro-
cess has to send messages forever). Let us observe that the
notion of communication-efficiency introduced in [1] is an
optimality notion, as, in order not to be falsely suspected to
have crashed, at least the leader -or a witness of it- has to
send messages forever.

The notion of “eventually timely � -source” has been in-
troduced in [2]. Such a source is a correct process that has �
eventually timely output links (where � is the maximal num-
ber of process crashes). It is shown that such a weak as-
sumption is strong enough for implementing . If the other
links are fair lossy, the proposed protocol requires the cor-
rect processes to send messages forever. A second protocol
is presented that is communication-efficient when addition-
ally the links are reliable and � links are timely (only � links
have then to carry messages forever).

Another direction has been recently investigated in [15]
where the notion of “eventual � -accessibility” is introduced.
A process � is � -accessible at some time � if there is a set�

of � processes � such that a message broadcast by � at
� receives a response from all the processes of

�
by time

��� � (where � is a bounded value known by the processes).
This notion requires a majority of correct processes. Its
interest lies in the fact that the set

�
of processes whose re-

sponses have to be received in a timely manner is not fixed
and can be different at distinct times. A protocol building
 when there is a process that is eventually � -accessible
forever, and all other links are fair-lossy is described in [15].

A protocol based on a totally different approach to build
 is described in [20]. It uses the time-free assumption pro-
posed and investigated in [16]. That approach does not re-
ly on timing assumptions and timeouts. It uses explicitly
the values of � (the total number of processes) and � (the
maximal number of processes that can crash), and consists
in stating a property on the message exchange pattern that,
when satisfied, allows to be implemented.

Assuming that each process can broadcast queries and
then, for each query, wait for the corresponding responses,
let us say that a response to a query is a winning response if
it arrives among the first !"�#	$�&% responses to that query (the
other responses to that query are called losing responses;
they can be slow, lost or never sent because their sender
has crashed). It is shown in [20] that can be built as
soon as the following behavioral property is satisfied:
“There are a correct process � and a set

�
of !'�#�)(*%

processes such that eventually the response of � to each
query issued by any ��+ � is always a winning response
(until -possibly- the crash of �).” When �
,-(, this property
becomes: “There is a link connecting two processes that
is never the slowest (in terms of transfer delay) among all

the links connecting these two processes to the rest of the
system.” A probabilistic analysis for the case �.,/(shows
that such a behavioral property on the message exchange
pattern is practically always satisfied [16]. This approach
has been extended to dynamic systems in [21] (systems
where processes can dynamically enter or leave the system).

Another approach to build is the “reduction” approach.
This is a theoretical approach whose aim is to build from
other failure detector classes. Let us consider the failure
detector class 02143 introduced in [3, 24]. This class in-
cludes all the failure detectors that provide each process �
with a set 5�6758�:9<;=�>9<?A@ containing process ids and satisfying
the following properties. Completeness: eventually the set
5�6758�:9<;=�>9<? @ of each correct process � permanently includes
the ids of all the crashed processes; Limited scope eventu-
al weak accuracy: there is a time after which, there is a
correct process that never appears in the sets of B (correct
or faulty) processes. 0C1ED corresponds to the class 021 in-
troduced in [4]. It is shown in [3] that, assuming reliable
communication, it is possible to build 021 from 021F3 if and
only if BHGI� . Moreover, there are protocols that build
in crash-prone asynchronous distributed systems equipped
with a failure detector of the class 021 [5, 6, 17]. A stack-
ing of the previous protocols provides a protocol building
in an asynchronous system equipped with 0C1EJ'KFL (this is a
“reduction” of to 0C14J'KEL).

As indicated, this approach is mainly theoretical: its aim-
s is to investigate, compare and rank the computability pow-
er of failure detector classes. One of its most important re-
sults is the fact that the classes and 0C1 are equivalent:
given a failure detector of any of these classes, it is possible
to build a failure detector of the other class [5, 6, 17].

Content of the paper: Weak reliability and synchrony
assumptions All the previous protocols implicitly as-
sume that each process initially knows the identity of each
other process. It is shown in [11] that this assumption is
a necessary requirement for the classes and 0C1 to be
equivalent. Actually, 0C1 cannot be built in a system where
the initial knowledge of each process is limited to its own
identity (if a process crashes before the protocol starts,
there is no way for the other processes to learn its id and
suspect it). This observation makes more attractive than
0C1 as its implementation can require weaker assumptions.
This paper investigates the implementation of in asyn-
chronous systems that satisfy rather weak assumptions on
the initial knowledge of each process, and the behavior of
the underlying network. Two protocols are presented.2.

2The assumptions or properties related to the initial knowledge of each
process are identified by the letter K, while the ones related to the network
behavior are identified by the letter C.

The first protocol assumes the following initial knowl-
edge assumptions:

M (K1) A process knows initially neither � , nor � , nor the
id of the other processes. It only knows its own id,
and the fact that the ids are totally ordered and no two
processes have the same id.

M (K2) Each process initially knows the lower bound (de-
noted �) on the number of correct processes. This
means that all but � processes can crash in any runN

(� can be seen as the differential value �O	P�).
This protocol is designed for the runs

N
where the underly-

ing network satisfies the two following behavioral proper-
ties:

M (C1) Each ordered pair of processes that are correct inN
is connected by a directed path made up of correct

processes and fair lossy links.

M (C2) Given a process � correct in
N

, let QSRSTVUSW4!YXZ% be
the set of the processes that are correct in

N
and acces-

sible from � through directed paths made up of correct
processes and eventually timely links.

There is at least one correct process � such that[Q8R\T]U\WZ!^X7% [�/�_	`� , where � is the number of actu-
al crashes during the run

N
.

The design principles of the protocol based on the
previous assumptions are the following. As � is an upper
bound on the number of process crashes, it is relatively
simple to design a leader protocol for the runs in which
exactly � processes crash, as, once � processes have
crashed, the system cannot experience more crashes (it
is then fault-free). The protocol is based on that simple
principle: the more processes have crashed, the simpler
it is to elect a leader, and the process that is eventually
elected as the final common leader is the process that is
the least suspected (this “technique” is used in many leader
protocols). Interestingly, this protocol tolerates message
duplication.

The paper then considers the design of a communication-
efficient protocol when the process initial knowledge is re-
stricted to (K1). This protocol works in any run

N
that sat-

isfies the following network behavioral properties:

M (C1’): Each pair of processes that are correct in
N

is
connected by (typed) fair lossy channels (one in each
direction).

M (C2’): There is a process correct in
N

whose output
links to every correct process are eventually timely.

This protocol guarantees that after some time, only the
common leader sends messages forever. It also satisfies
the following noteworthy property: be the execution finite
or infinite, both the size of the local memories and the
size of the messages remain finite. Differently from the
first protocol, this protocol assumes that no link duplicates
messages. Its design combines new ideas with ideas used
in [1, 2, 11].

To our knowledge, [11] is the only paper that has pro-
posed a leader election protocol for processes that only
know their own identity (K1). The first leader election pro-
tocol presented in this paper is the first that combines this
weak assumption with knowledge of � , allowing weaker
network behavioral properties. The second protocol is the
first that achieves communication efficiency with assump-
tion (K1).

These protocols show interesting tradeoffs between their
requirements ((K2,C1,C2) vs (C1’,C2’)), and the additional
communication-efficient property they provide or not.
A problem that remains open consists in designing (or
showing the impossibility of designing) a communication-
efficient protocol relying on network assumptions weaker
than (C1’,C2’).

Interestingly, it is possible to state a lower bound on what
can be done in an asynchronous system where the initial
knowledge of any process includes neither � nor � . This
lower bound states that, in such systems, there is no leader
protocol in the runs where less than �P	a(links eventual-
ly behave in a timely manner. Due to page limitation, the
reader will find the proof of this theorem in [7].

Roadmap The paper is made up of four sections. Section
2 presents the distributed system model. Section 3 presents
the first protocol and proves it is correct. Section 4 presents
the communication-efficient protocol. Due to page limita-
tion it has not been possible to include the proofs of these
protocols (although they are very important). The reader
can find them in [7].

2 Distributed System Model

2.1 Synchronous Processes with Crash Failures

The system is made up of a finite set b of � processes.
Each process �dc has an id. The process ids are totally or-
dered (e.g., they are integers), but need not be consecutive.
Sometimes we also use � or � to denote processes.

As indicated in the introduction, initially, a process �7c
knows its own id (e) and the fact that no two processes have
the same id. A process can crash (stop executing). Once

crashed, a process remains crashed forever. A process ex-
ecutes correctly until it possibly crashes. A process that
crashes in a run is faulty in that run, otherwise it is correc-
t. The model parameter � denotes the maximum number of
processes that can crash in a run ((gfI�h�I�); � denotes
the number of actual crashes in a given run (i�fj�afk�).
A process knows neither � nor � . The first protocol (only)
requires that each process initially knows the lower bound
�l,`�O	P� on the number of correct processes.

Processes are synchronous in the sense that there are
lower and upper bounds on the number of processing step-
s they can execute per time unit. Each process has also a
local clock that can accurately measure time intervals. The
clocks of the processes are not synchronized. To simplify
the presentation, and without loss of generality, we assume
in the following that local processing takes no time. Only
message transfer take time.

2.2 The Communication Network

The processes communicate by exchanging messages
over links. Each pair of processes is connected by two di-
rected links, one in each direction.

Individual link behavior Each message sent by a process
is assumed to be unique. A link cannot create or alter mes-
sages, but does not guarantee that messages are delivered in
the order in which they are sent.

Concerning timeliness or loss properties, the communi-
cation system offers three types of links. Each type defines
a particular quality of service that the corresponding links
are assumed to provide.

M Eventual timely link. The link from � to � is eventual
timely if there is a time � � and a bound � such that each
message sent by � to � at any time �m�a� � is received
by � by time �#�P� (� and � are not a priori known and
can never be known).

M Fair lossy link. Let us assume that each message has a
type. The link from � to � is fair lossy if, for each typen , assuming that � sends to � infinitely many messages
of the type n , � (if it is correct) receives infinitely many
messages of type n from � .

M Lossy link. The link from � to � is lossy if it can lose
an arbitrary number of messages (possibly all the mes-
sages it has to carry).

As we can see, fair lossy links and lossy links are inherently
asynchronous, in the sense that they guarantee no bound on
message transfer delays. An eventual timely link can be
asynchronous for an arbitrary but finite period of time.

Communication primitive Since processes do not know
the id of the other processes, they cannot send point-to-
point message to them. Instead, processes are provided with
a broadcast primitive that allows each process � to simulta-
neously send the same message o to the rest of processes in
the system (e.g., like in Ethernet networks, radio network-
s, or IP-multicast). It is nevertheless possible, depending
on the quality of the connectivity (link behavior) between �
and each process, that the message o is received in a timely
manner by some processes, asynchronously by other pro-
cesses, and not at all by another set of processes.

Global properties related to the communication systemN
being a run, let prqsEt be the directed graph whose vertices

are the processes that are correct in
N

, and where there is a
directed edge from � to � if the link from � to � is eventually
timely in

N
. Similarly, let prquwv be the directed graph whose

vertices are the correct processes, and where there is a di-
rected edge from � to � if the link from � to � is fair lossy.
(Notice that p#qs4t is a subgraph of prquwv .) Given a correct
process � , xy9<z{;�|E!}�d% (introduced in the first section) is the
subset of correct processes � (��~,k�) that can be reached
from � in the graph prqs4t . (This means that there is a path
made up of eventually timely links and correct processes
from � to each ��+�xy9*z{;�|E!}��% .)

As already indicated in the introduction, given an arbi-
trary run

N
, we consider the following behavioral properties

on the communication system:

M (C1): The graph prquwv is strongly connected.

M (C1’): Each pair of correct processes is connected by
fair lossy channels (one in each direction).

M (C2): There is (at least) one correct process � such that[QSRSTVUSW4!YXZ% [���F	�� .

M (C2’): There is a correct process whose output links to
every correct process are eventually timely.

Let us observe that the property (C2) is always satisfied in
the runs where ��,k� (the maximum number of processes
allowed to crash effectively crash). Moreover, (C1’) and
(C2’) are stronger than (C1) and (C2), respectively.

2.3 The Class of Oracles

 has been defined informally in the introduction. A
leader oracle is a distributed entity that provides the pro-
cesses with a function leader() that returns a process id each
time it is invoked. A unique correct process is eventual-
ly elected but there is no knowledge of when the leader is
elected. Several leaders can coexist during an arbitrarily
long period of time, and there is no way for the processes
to learn when this “anarchy” period is over. A leader oracle
satisfies the following property:

M Eventual Leadership: There is a time � and a correct
process � such that any invocation of leader() issued
after � returns � .

 -based consensus algorithms are described in [10, 12, 19]
for asynchronous systems where a majority of processes are
correct (�2���E�A�). Such consensus algorithms can then be
used as a subroutine to solve other problems such as atomic
broadcast (e.g., [4, 12, 18, 22]).

3 A Leader Election Protocol

Assuming that each process knows its identity (K1), the
lower bound � on the number of correct processes (K2),
and that all the processes have distinct and comparable i-
dentities, the protocol that follows elects a leader in any run
where the underlying communication network satisfies the
properties (C1) and (C2). The proposed protocol tolerates
message duplication. Finally, as far as the definition of fair
lossy link is concerned, all the messages have the same type.

3.1 Description of the Protocol

As in other leader protocols, the aim is for a process to
elect as its current leader a process that is alive and is per-
ceived as the “least suspected”. The notion of “suspected”
is implemented with counters, and “less suspected” mean-
s “smallest counter” (using process ids to tie-break equal
counters.) The protocol is described in Figure 1. It is com-
posed of two tasks. Let � be a set of pairs � counter, pro-
cess id G . The function lex min(�) returns the smallest pair
in � according to lexicographical order.

Local variables The local variables shared and managed
by the two tasks are the following ones.

M`� R �$� R�Q\�8� : set containing all the process ids that ��c is
aware of.

M ��e�o�9*x*c&� �A� : timer used by �dc to check if the link from ���
is timely. The current value of ��e�o�9<�<6d� c � �]� is used as
the corresponding timeout value; it is increased each
time ��e�o�9*x c � �]� expires.
5�e��"9*�7� c is a set containing the ids � of all the process-
es � � such that ��e�o�9*x c � �]� has expired since its last re-
setting; �>� xy9y5*9�� c is a set containing the ids � of the
processes ��� whose timer has to be reset.

M 5�6�58� ��9*��9<�^c>� �]� contains the integer that locally mea-
sures the current suspicion level of ��� . It is the counter
used by �dc to determine its current leader (see the in-
vocation of leader() in Task ���).
The variable 5�6�58�d9*;��>9*? �\ c � �A� : set used by � c to man-
age the increases of 5�6758� �"9*�{9*� c � �]� . Each time � c

knows that a process �7� suspects � � it includes � in
5�6�58�:9<;=�>9<? �= c � �]� . Then, when the number of process-
es in 5�675&�d9<;=�>9<? �\ Vc&� �A� reaches the threshold � , �dc in-
creases 5�6758� �"9*�{9<�^c&� �]� and resets 5�6�58�d9*;��>9*? �\ Vc&� �A� to¡

for a new observation period.

M 5��Zc : local counter used to generate the increasing se-
quence numbers attached to each message sent by �7c .

M 5��>zV�>9<c : set containing an element for each process
� � that belongs to � R �¢� R�Q\�8� , namely, the most re-
cent information issued by �7� that � c has received so
far (directly from ��� or indirectly from a path involv-
ing other processes). That information is a quadruple
!���£\5��4��£8;�z��Z?{�{£S5�e��"9*�7�&�<% where the component ;�zV�Z?¤�
is the set ¥{!�5�6�58� ��9*��9<�'��� ¦=��£&¦�% [¦h+ � R �$� R�Q\�8§{¨ from
which ��� elects its leader.

Process behavior The aim of the first task of the protocol
is to disseminate to all the processes the latest state known
by �:c . That task is made up of an infinite loop (executed
every © time units) during which ��c first updates its local
variables 5�6�58�:9<;=�>9<? �\ c � �]� and 5�6�58� ��9*��9<� c � �]� according to
the current values of the sets 5�e���9��7� c and � R �¢� R�Q\� � . Then
� c updates its own quadruple in 5��>z��>9 c to its most recent
value (which it has just computed) and broadcasts it (this
is the only place of the protocol where a process sends
messages). Finally, � c resets the timers that have to be reset
and updates accordingly �>� x<9y5*9*� c to

¡
.

The second task is devoted to the management of the
three events that can locally happen: local call to leader(),
timer expiration and message reception. The code associat-
ed with the two first events is self-explanatory.

When it receives a message (denoted 5��>z��>9 oª5�«), a
process �dc considers and processes only the quadruples
that provide it with new information, i.e., the quadruples
!���£\5�� ��£S;�z��Z? �7£S5�e��"9*�7� ��% such that it has not yet pro-
cessed a quadruple !���£S5��4¬�£�	#£�	% with 5��4¬¢�®5�� � . For
each such quadruple, � c updates 5��>z��>9 c (it also allocates new
local variables if � is the id of a process it has never heard of
before). Finally, � c updates its local variables 5�6758� �"9*�{9<� c � ¦=�
and 5�6758�:9<;=�>9<? �\ c � ¦=� according to the information it learns
from each new quadruple !���£\5�� ��£8;�z��Z? ��£S5�e��"9*�7� �w% it has
received in 5��>zV�>9 oª5�« .
3.2 Proof of the Protocol

Considering that each processing block (body of the
loop in Task �r(, local call to leader(), timer expiration and
message reception managed in Task ���) is executed atomi-
cally, we have ¯Y�°+ � R �$� R�Q\� ��± iff ¯8!²�V£�	#£�	#£�	%_+g5��>zV�>9 c�±
iff ¯ 5�6758�:9<;=�>9<? �\ Vc&� �A� and 5�675&�d9<;=�>9<? �\ Vc&� �A� are allocated ± .
We also have ¯ ��e�o�9�x c � �]� and ��e�o�9<�<6:� c � �]� are allocated ±

iff ¯Y�³+ � R �¢� R�Q\� �C´ ¥*e8¨ ± . It follows from these ob-
servations that all the local variables are well-defined:
they are associated exactly with the processes known by
�:c . Moreover, a process ��c never suspects itself, i.e., we
never have eµ+¶5�e��"9*�7�&c (this follows from the fact that,
as ��e�o�9*x�c8� e�� does not exist, that timer cannot expire - the
timer expiration in ��� is the only place where a process id
is added to 5�e��"9*�7� c , Line 08 of Figure 1-).

The proof considers an arbitrary run
N

. Let · be the set
that contains all the processes � c that are correct in

N
and[xy9<z{;�|E!'e>% [�¸�¹	�� . By property (C2) and by assumption

·a~, ¡ .
Lemma 1 [7] Let !���£\5��
£�	#£�	% be a quadruple received by
a correct process �dc . All the correct processes eventually
receive a quadruple !��7£S5��4¬�£�	#£�	% such that 5��4¬7��5�� .

Lemma 2 [7] Let � c be a process in · . There is a time after
which, for any process ��� in xy9<z{;�|E!'e>% , eº+P5�e���9��7��� remains
permanently false.

Lemma 3 [7] Let � c be a process in · . There is a time after
which the local variables 5�6�58� ��9��{9<�"�{� e�� of all the correc-
t processes ��� remain forever equal to the same bounded
value (denoted �w» �).
Lemma 4 [7] Let ¼ be the set of processes � c such that
5�6�58� ��9��{9<�'��� e�� remains bounded at some correct process
�d� . (1) ¼ ~, ¡

. (2) ½de)+¾¼ , the local variables
5�6�58� ��9��{9<�'��� e�� of all the correct processes �7� remain for-
ever equal to the same bounded value (denoted �w» �).
Lemma 5 [7] Let � c be a faulty process. Either all the cor-
rect processes � � are such that el�+ � R �$� R�Q\�"¿ forever, or
their local variables 5�6758� �"9*�{9<� � � e�� increase indefinitely.

Theorem 1 [7] The protocol described in Figure 1 ensures
that, after some finite time, all the correct processes have
forever the same correct leader.

4 A Communication-Efficient Protocol

As announced previously, this section presents an even-
tual leader protocol where, after some finite time, a single
process sends messages forever. Moreover, no message car-
ries values that increase indefinitely: the counters carried by
a message take a finite number of values. This means that,
be the execution finite or infinite, both the local memory of
each process and the message size are finite. The process
initial knowledge is limited to (K1), while the network be-
havior is assumed to satisfy (C1’) and (C2’). Moreover, it
is assumed that there is no message duplication.

Init: allocate À&ÁVÀ�Â ÃÅÄ&Æ�Ä8ÃÈÇ�É Ê²Ë and À&ÁVÀ�ÂAÄ8Ì>Í'Ä8Î Ï�Ð�Ç>É Ê²Ë ; À&ÁVÀ"Â ÃÅÄ&Æ�ÄSÃ}Ç�É Ê²Ë]Ñ�Ò ; À&ÁVÀ"Â]Ä8Ì�Í'ÄSÎ Ï�Ð�Ç�É Ê²Ë]Ñ�Ó ;ÔºÕ8Ô�Ö�Õ8×�Ø�Ù ÑÛÚ8Ê"Ü ; Í'Ý Þ=ÄSÀ8Ä8Í'ÇwÑ�Ó ; À>Ê^ÃÅÄ&ß�Í'ÇwÑ�Ó ; À&ß�ÇwÑ�Ò ;À>Í'à�Í'Ä8ÇdÑÛÚ�áÅÊ�â>À>ß{Ç�â�Ú�á^À>ÁVÀ�Â ÃÈÄ8Æ�ÄSÃ}Ç�É Ê²Ë^â"Ê'ã�Ü�â�À>Ê^ÃÈÄ8ß�Í'Ç"ã�Ü % initial knowledge (K1) %
———–
Task äæå :

repeat forever every ç time units
(01) À&ß{ÇwÑ-À>ß{ÇVèOå ;
(02) for each é_ê#À>Ê^ÃÅÄ&ß�Í'Ç do À&ÁVÀ"Â]Ä8Ì�Í'ÄSÎ Ï�Ð�Ç>É é�ËyÑ-À&ÁVÀ�ÂAÄ8Ì>Í'Ä8Î Ï�Ð�Ç>É é�Ë�ëCÚ8Ê"Ü end for;
(03) for each é_ê ÔºÕ8Ô�Ö�Õ8×�Ø�Ù such that ì À&ÁVÀ"Â]Ä8Ì�Í'ÄSÎ Ï�Ð�Ç>É é�Ë"ì�í°î do % initial knowledge (K2) %
(04) À>Á�À"Â ÃÈÄ8Æ�ÄSÃ}Ç>É é�ËAÑ-À>ÁVÀ�Â ÃÈÄ8Æ�ÄSÃ}Ç�É é�Ë�è�å ; À>ÁVÀ�ÂAÄSÌ�Í'ÄSÎ Ï�Ð�Ç>É é=ËAÑ�Ó end for;
(05) replace áÅÊ�â&ï
â&ï
â>ïEã in À&Í'à�Í'ÄSÇ by á²Ê�â�À&ß�Ç�â�Ú�áYÀ&ÁVÀ�Â ÃÈÄ8Æ�Ä8ÃÈÇ�É é=Ë^âÅé*ã:ì�é_ê ÔºÕ8Ô_Ö�Õ8×�Ø�Ù Ü�â�À&Ê^ÃÈÄ8ßVÍ'Ç�ã ;
(06) broadcast áYÀ&Í'à�Í'ÄSÇ�ã ;
(07) for each é_êCÍ'Ý Þ=Ä\À&Ä8Í'Ç do set Í^ÊYð�Ä8Þ8Ç&É é=Ë to Í^ÊYð�ÄSÝ8Á]Í'Ç&É é�Ë end for; Í'Ý Þ=ÄSÀ8Ä8Í'ÇwÑ�Ó

end repeat
———–
Task äEñ :
when leader() is invoked by the upper layer:

return ò}ó such that á"ï
â'ó8ã2ô lex min á'Ú�áYÀ&ÁVÀ�Â ÃÈÄ8Æ�Ä8ÃÈÇ>É é�Ë^âÅé*ã�Ü�õ�öy÷ZøY÷7ùYø^úYûYü) ý
when Í^ÊYð�Ä8ÞSÇ>É é�Ë expires:
(08) Í^ÊYð�ÄSÝSÁAÍ'Ç&É é=ËAÑ�Í^ÊYð�ÄSÝ8Á]Í'Ç&É é�Ë�è�å ; À>Ê^ÃÅÄ&ß�Í'ÇwÑÛÀ&ÊYÃÅÄ&ß�Í'Ç]ë2Ú�é*Ü
when À&Í'à�Í'Ä ðCÀ&þ is received:
(09) let ÿ ô ÚFá � â�À>ß � â�Ì>à�ß{Î � â�À>Ê^ÃÅÄ&ß�Í � ã:ìá � â�À>ß � â�Ì>à�ß{Î � â�À&ÊYÃÅÄ&ß�Í � ã7êCÀ&Í'à�Í'Ä ðCÀ&þ���� �ºá � â�À>ß��'â>ï
â&ïEã�ê2À&Í'à�Í'ÄSÇ with À&ß��wíhÀ&ß � Ü ;
(10) for each á � â�À>ß � â�Ì>à�ß{Î � â�À>Ê^ÃÈÄ8ß�Í � ã7êCÿ do
(11) if

� ê Ô_Õ8Ô_Ö�Õ8×�Ø�Ù then replace á � â>ï
â&ï
â>ïEã in À>Í'à�Í'ÄSÇ by á � â�À&ß � â"Ì>à�ß�Î � â�À&Ê^ÃÈÄ8ßVÍ � ã ;
(12) stop Í^ÊYð�Ä8Þ8Ç&É � Ë ; Í'Ý Þ=ÄSÀ8Ä8Í'ÇwÑ�Í'Ý Þ=Ä\À&Ä8Í'Ç]ë2Ú � Ü ; À>Ê^ÃÈÄ8ß�Í'Ç�Ñ-À>Ê^ÃÅÄ&ß�Í'Ç
	4Ú � Ü
(13) else add á � â�À&ß � â�Ì>à�ß�Î � â�À&Ê^ÃÈÄ8ßVÍ � ã to À&Í'à�Í'ÄSÇ ;
(14) allocate À&ÁVÀ�Â ÃÈÄ8Æ�Ä8ÃÈÇ�É � Ë , À&ÁVÀ�ÂAÄSÌ�Í'Ä8Î Ï�Ð�Ç�É � Ë , Í^Ê²ðCÄ8ÝSÁAÍ'Ç&É � Ë and Í^ÊYð�Ä8Þ8Ç&É � Ë ;
(15) À>ÁVÀ�Â ÃÈÄ8Æ�Ä8ÃÈÇ>É � ËAÑ�Ò ; À>Á�À"ÂAÄSÌ�Í'ÄSÎ Ï�Ð�Ç>É � Ë]Ñ�Ó ; Í^ÊYð�ÄSÝSÁAÍ'Ç8É � ËAÑ�ç ;
(16) ÔºÕ8Ô_Ö�Õ8×�Ø�Ù Ñ Ô_Õ&Ô�Ö�Õ&×�Ø�Ù ëCÚ � Ü ; Í'Ý Þ=ÄSÀ8Ä&Í'Ç:Ñ�Í'Ý Þ=Ä\À&Ä8Í'ÇVë2Ú � Ü

end if
end for;

(17) for each á � â�À>ß � â�Ì>à�ß{Î � â�À>Ê^ÃÈÄ8ß�Í � ã7êCÿ do
(18) for each á^À&Ã'â^ó8ã�êCÌ&à�ß{Î � do À>ÁVÀ�Â ÃÈÄ8Æ�ÄSÃ}Ç&É ó�ËyÑ�����VáYÀ&ÁVÀ"Â ÃÅÄ&Æ�ÄSÃ}Ç�É ó�Ë^â�À8ÃÅã end for;
(19) for each ó
êCÀ>Ê^ÃÅÄ&ß�Í � do À>Á�À"ÂAÄSÌ�Í'ÄSÎ Ï�Ð�Ç�É ó�Ë]Ñ-À>Á�À"ÂAÄSÌ�Í'ÄSÎ Ï�Ð�Ç�É ó�Ë�ë�Ú � Ü end for

end for

Figure 1. An eventual leader protocol (code for � c)

4.1 Description of the Protocol

The protocol is described in Figure 2. As the protocol
described in Figure 1, this protocol is made up of two tasks,
but presents important differences with respect to the previ-
ous protocol.

Local variables A first difference is the Task �r(, where
a process �dc sends messages only when it considers it is
a leader (Line 01). Moreover, if, after being a leader, � c
considers it is no longer a leader, it broadcasts a message to
indicate that it considers locally it is no longer leader (Line
04). A message sent with a tag field equal to heartbeat (Line
03) is called a heartbeat message; similarly, a message sent
with a tag field equal to stop leader (Line 04) is called a
stop leader message.

A second difference lies in the additional local variables

that each process has to manage. Each process ��c maintain-
s a set, denoted U�������R����VR�Q\�S� , plus local counters, denoted
|:��;�c and �"z¤5�� 5��>�\� �"9<z{?�9�x*c&� ��� (for each process � � that �dc
is aware of). More specifically, we have:

M The set U�������R����VR�Q\�8� contains the ids of the process-
es that compete to become the final common lead-
er, from �dc ’s point of view. So, we always have
U�������R����VR�Q\� ��� � R �$� R�Q\� � . Moreover, we also always
have e�+�U�������R����VR�Q\� � . This ensures that a leader elec-
tion is not missed since, from its point of view, � c is
always competing to become the leader.

M The local counter |:�=; c registers the number of distinct
periods during which � c considered itself the leader. A
period starts when leader() = e becomes true, and fin-
ishes when thereafter it becomes false (Lines 01-04).

M The counter ��z¤5�� 5��>�\� ��9<z�?�9*x c � ��� contains the great-

est |d�=;�� value ever received in a stop leader message
sent by ��� . This counter is used by � c to take into ac-
count a heartbeat message (Line 12) or a stop leader
message (Line 14) sent by � � , only if no “more recen-
t” stop leader message has been received (the notion
of “more recent” is with respect to the value of |:��;�c
associated with and carried by each message).

Messages Another difference lies in the shape and the
content of the messages sent by a process. A message has
five fields !'�>zV« ��£S��£\5*� ��£S5�e��"9*�7� ��£S|d�=; �w% whose meaning
is the following:

M The field �>zV« � can take three values: heartbeat,
stop leader or suspicion that defines the type of the
message. (Similarly to the previous cases, a message
tagged suspicion is called a suspicion message. Such
a message is sent only at Line 05.)

M The second field contains the id � of the message
sender.

M 5*� � is the value of 5�6758� �"9*�{9<� � � ��� when � � sen-
t that message. Let us observe that the value of
5�6�58� ��9��{9<�'��� ��� can be disseminated only by �7� .

M 5�e���9*�7� ��,¸� means that ��� suspects � � to be faulty.
Such a suspicion is due to a timer expiration that oc-
curs at Line 05. (Let us notice that the field 5�e���9*�7� �
of a message that is not a suspicion message is always
equal to � .)

M |:��; � : this field contains the value of the period
counter |d�=; � of the sender � � when it sent the mes-
sage. (It is set to 0 in suspicion messages.)

The set of messages tagged heartbeat or stop leader de-
fines a single type of message. Differently, there are �
types of messages tagged suspicion: each pair (suspicion,
5�e���9��7�&�) defines a type.

Process behavior When a timer ��e�o�9*x c � �]� expires, � c
broadcasts a message indicating it suspects � � (Line 05)3,
and accordingly suppresses � from U�������R����]R�Q\� � . Togeth-
er with Line 16, this allows all the crashed processes to
eventually disappear from U�������R����]R�Q\� � . When � c receives a
!'�>zV« ��£\��£S5*� �7£S5�e��"9*�7� �7£S|d�=; �w% message, it allocates new
local variables if that message is the first it receives from

3The suspicion message sent by Â]Ç concerns only Â õ . It is sent by
a broadcast primitive only because the model does not offer a point-
to-point send primitive. If a point-to-point send primitive was avail-
able the broadcast at Line 05 would be replaced by the statement “sendá suspicion â"Ê�â�À&ÁVÀ�Â ÃÅÄ&Æ�ÄSÃÈÇ>É Ê²Ë^â"Ò�ã to Â õ ”, and all the suspicion messages
would then define a single message type. In that case each tag would define
a message type. This shows an interesting tradeoff relating communication
primitives (one-to-one vs one-to-many) and the number of message types.

�d� (Lines 07-10); � c also updates ���{��X ²R"!yR" c � ��� (Line 11).
Then, the processing of the message depends on its tag.

M The message is a heartbeat message (Lines 12-13). If
it is not an old message (this is checked with the test
�"z¤5�� 5��>�\� �"9<z{?�9�x*c&� ��� � |:��; �), �dc resets the corre-
sponding timer and adds � to U�������R����VR�Q\�S� .

M The message is a stop leader message (Lines 14-16).
If it is not an old message, ��c updates its local counter
�"z¤5�� 5��>�\� �"9<z{?�9�x*c&� ��� , stops the corresponding timer
and suppresses � from U�������R����VR�Q\�S� .

M The message is a suspicion message (Lines 17). If
the suspicion concerns ��c , it increases accordingly
���{��X ÅR�!<R� c � e�� .

4.2 Proof of the Protocol

This section proves that (1) the protocol described in Fig-
ure 2 eventually elects a common correct leader, and (2) no
message carries values that indefinitely grow. The proof-
s assume only (K1) as far the process initial knowledge is
concerned. It assumes (C1’) and (C2’) as far as the network
behavioral assumptions are concerned.

Lemma 6 [7] Let � � be a faulty process. There is a finite
time after which the predicate � �+ U�������R����VR�Q\�<c remains
permanently true at each correct process ��c .
Proof Let ��� and � c be a faulty process and a correct pro-
cess, respectively. The only line where a process is added to
U�������R����]R�Q\� c is Line 13. If follows that, if � c never receives a
heartbeat message from �7� , � is never added to U��#����R"�$�]R�Q\� c
and the lemma follows for � � .

So, considering the case where � c receives at least one
heartbeat message from ��� , let us examine the last heartbeat
or stop leader message o from �7� received and processed
by �:c . “Processed” means that the message o carried a field
|:��; � such that the predicate �"z¤5�� 5��>�\� �"9<z{?V9*x<c&� ���4�µ|d�=; �
was true when the message was received. Let us notice that
there is necessarily such a message, because at least the first
heartbeat or stop leader message from � � received by �dc sat-
isfies the predicate.

Due to the very definition of o , there is no other mes-
sage from � � such that �dc executes Line 13 or Line 16 after
having processed o . There are two cases, according to the
tag of o .

M If o is a stop leader message, � c executes Line
16 and consequently suppresses definitely � from
U�������R����VR�Q\� c .

M If o is a heartbeat message, � c executes Line 13.
This means that it resets ��e�o�9*x c � ��� and adds � to

Init: allocate À>ÁVÀ�Â ÃÈÄ8Æ�ÄSÃ}Ç�É Ê²Ë ; À>Á�À"Â ÃÈÄ8Æ�ÄSÃ}Ç�É Ê²Ë]Ñ�Ò ;% Ï�Ì>ÇwÑ�Ò ; &('�)�* Õ)#+ Õ8×�Ø"Ù ÑÛÚ8Ê"Ü ; ÔºÕ8Ô�Ö�Õ8×�Ø�Ù ÑÛÚ8Ê"Ü
———————————————————————————————————————
Task äæå :

repeat foreverß{Ä-,yÍ ÂAÄ8Þ\Ê^ÝSÎ�Ç�Ñ/.10�2 Ø�Õ ;
(01) while leader() = Ê do every ç time units
(02) if á43wß�Ä-,yÍ ÂAÄ8ÞSÊ^Ý\Î�Ç�ã then ß�Ä-,yÍ ÂAÄ8ÞSÊ^Ý\Î�Ç�Ñ5* ×16<Õ ; % Ï�Ì>ÇwÑ % Ï�Ì>Ç�èOå endif;
(03) broadcast á heartbeat â�Ê�â�À&ÁVÀ�Â ÃÅÄ&Æ�Ä8ÃÈÇ�É Ê²Ë^â87_â % Ï�Ì>Ç"ã

end while;
(04) if áÅß{Ä9,yÍ ÂAÄ8Þ\ÊYÝ\Î�Ç"ã then broadcast á stop leader â�Ê�â�À&ÁVÀ�Â ÃÅÄ&Æ�Ä8ÃÈÇ�É Ê²Ë^â87ºâ % Ï�Ì>Ç"ã end if

end repeat
———————————————————————————————————————
Task äEñ :
when leader() is invoked:

return ò}ó such that á"ï
â'ó8ã2ô lex min á'Ú�áYÀ&ÁVÀ"Â ÃÅÄ&Æ�Ä8ÃÈÇ�É é�Ë^âÅé�ã�Ü õ=ö
:<;8=�>Åø4=�?>øYúYûYü) ý
when Í^Ê²ðCÄ&ÞSÇ>É é�Ë expires:
(05) Í^ÊYðCÄ8ÝSÁAÍ'Ç8É é�ËyÑ�Í^ÊYð�ÄSÝSÁAÍ'Ç>É é�Ë�èOå ; broadcast á suspicion â�Ê�â�À&ÁVÀ�Â ÃÅÄ&Æ�Ä8ÃÈÇ�É Ê²Ë^â²é�â"Ò�ã ;
(06) &('�)�* Õ)#+ Õ8×�Ø�Ù Ñ@&('�)�* Õ)#+ Õ&×�Ø�Ù 	4Ú�é<Ü
when áÅÍ'à�þ � â � â�À&Ã � â�À&Ê^ÃÈÄ8ßVÍ � â % Ï�Ì � ã is received with

� �ôOÊ :
(07) if á �BAê Ô_Õ8Ô_Ö�Õ8×�Ø�Ù ã then Ô_Õ&Ô�Ö�Õ&×�Ø�Ù Ñ ÔºÕ8Ô_Ö�Õ8×�Ø�Ù ë2Ú � Ü ;
(08) allocate À&ÁVÀ"Â ÃÈÄ8Æ�ÄSÃ}Ç&É � Ë and ÃÈà*À>Í À&Í'Ý�Â ÃÅÄ8à�Î�Ä8Þ8Ç&É � Ë ;
(09) À&ÁVÀ"Â ÃÅÄ&Æ�ÄSÃ}Ç>É � ËAÑ-Ò ; ÃÅà�À&Í À&Í'Ý�Â ÃÈÄSà�Î�Ä8Þ8Ç>É � Ë]Ñ�Ò ;
(10) allocate Í^ÊYð�ÄSÝSÁAÍ'Ç&É � Ë and Í^ÊYð�Ä8Þ8Ç&É � Ë ; Í^ÊYð�ÄSÝSÁAÍ'Ç>É � ËAÑ�ç end if;
(11) Ø(6*Ø4C 2 Õ-DSÕ 2 Ù É E�Ë]Ñ�����Aá Ø86*Ø4C 2 Õ9D\Õ 2 Ù É E�ËYâ�À8Ã � ã ;
(12) if ò�áÅÍ'à�þ � ô heartbeat ãF�PÃÅà�À&Í À>Í'Ý�Â ÃÈÄSà�Î�Ä8ÞSÇ>É � Ë�G % Ï�Ì � ã"ý
(13) then set Í^ÊYðCÄ&ÞSÇ>É � Ë to Í^Ê²ðCÄ8ÝSÁAÍ'Ç&É � Ë ; &('�)�* Õ)#+ Õ8×�Ø"Ù Ñ@&('�)�* Õ)#+ Õ&×�Ø�Ù ëCÚ � Ü endif;
(14) if ò�áÅÍ'à�þ � ô stop leader ãF�mÃÈà*À>Í À&Í'Ý�Â ÃÈÄSà�Î�Ä8ÞSÇ�É � Ë
G % Ï�Ì � ã'ý
(15) then ÃÈà�À&Í À>Í'Ý�Â ÃÅÄ8à�Î�Ä&ÞSÇ�É � ËAÑ % Ï�Ì � ;
(16) stop Í^ÊYð�Ä8Þ8Ç&É � Ë ; &('�)�* Õ)#+ Õ&×�Ø�Ù ÑH&('�)�* Õ)#+ Õ8×�Ø�Ù 	EÚ � Ü endif;
(17) if ò áÅÍ'à�þ � ô suspicion ã���áYÀ&Ê^ÃÈÄ8ßVÍ � ôhÊ'ã ý then À&ÁVÀ�Â ÃÅÄ&Æ�Ä8Ã}Ç&É Ê²ËyÑÛÀ&ÁVÀ�Â ÃÅÄ&Æ�Ä8Ã}Ç&É Ê²Ë�èOå endif

Figure 2. A communication-efficient eventual leader protocol (code for � c)

U�������R����]R�Q\��c . Then, as no more heartbeat messages
from �d� are processed by � c , ��e�o�9*x c � ��� eventual-
ly expires and consequently � c withdraws � from
U�������R����]R�Q\� c (Line 06), and never adds it again (as o
is the last processed heartbeat message), which proves
the lemma.

IKJ�L1M�M�NPO

Given a run, let ¼ be the set of correct processes � c such
that the largest value ever taken by 5�675&� �"9*��9<� c � e�� is bound-
ed. Moreover, let Q c denote that value. Let R be the set
of correct processes whose all output links with respect to
each other correct process are eventually timely. Due to the
assumption (C2’), we have R ~, ¡ .
Lemma 7 [7] ¼ ~, ¡ .
Let !SQUT*£>¦�%æ, lex min !�¥{!SQ�c>£&e>% [e�+�¼°¨<% .
Lemma 8 [7] There is a single process � T . Moreover � T is
a correct process.

Lemma 9 [7] Let �dc and �¤� be two correct process-
es. There is a finite time after which (1) the predicate
e��+ ;��<�7�>9*�Z?�9�xA5 � is always satisfied or (2) !"e�+ ¼WV
5�6�58� ��9��{9<� � � e��d,XQ c %BYk!'eC�+�¼ZV 5�6758� �"9*�{9<� � � e��Z�[Q T % .

Lemma 10 [7] There is a time after which � T executes for-
ever the while loop of its Task �r((Lines 01-03).

Theorem 2 [7] The protocol described in Figure 2 ensures
that, after some finite time, all the correct processes have
forever the same correct process ��T as common leader.

4.3 Protocol Optimality

Theorem 3 [7] There is a time after which a single process
sends messages forever.

Theorem 4 [7] In an infinite execution, both the local mem-
ory of each process and the size of each message remain
finite.

References

[1] Aguilera M.K., Delporte-Gallet C., Fauconnier H. and
Toueg S., On Implementing Omega with Weak Reliabil-
ity and Synchrony Assumptions. 22th ACM Symposium
on Principles of Distributed Computing (PODC’03), ACM
Press, pp. 306-314, 2003.

[2] Aguilera M.K., Delporte-Gallet C., Fauconnier H. and
Toueg S., Communication Efficient Leader Election and
Consensus with Limited Link Synchrony. 23th ACM Sym-
posium on Principles of Distributed Computing (PODC’04),
ACM Press, pp. 328-337, 2004.

[3] Anceaume E., Fernández A., Mostefaoui A., Neiger G. and
Raynal M., Necessary and Sufficient Condition for Trans-
forming Limited Accuracy Failure Detectors. Journal of
Computer and System Sciences, 68:123-133, 2004.

[4] Chandra T.D. and Toueg S., Unreliable Failure Detectors
for Reliable Distributed Systems. Journal of the ACM,
43(2):225-267, 1996.

[5] Chandra T.D., Hadzilacos V. and Toueg S., The Weak-
est Failure Detector for Solving Consensus. Journal of the
ACM, 43(4):685-722, 1996.

[6] Chu F., Reducing \ to]P^ . Information Processing Letters,
76(6):293-298, 1998.

[7] Eventual Leader Election with Weak Assumptions on Ini-
tial Knowledge, Communication Reliability, and Synchrony.
Tech Report #1770, IRISA, Université de Rennes (France),
19 pages 2005.
http://www.irisa.fr/bibli/publi/pi/2005/1770.0770.html

[8] Fischer M.J., Lynch N. and Paterson M.S., Impossibility of
Distributed Consensus with One Faulty Process. Journal of
the ACM, 32(2):374-382, 1985.

[9] Guerraoui R., Indulgent Algorithms. 19th ACM Symposium
on Principles of Distributed Computing, (PODC’00), ACM
Press, pp. 289-298, 2000.

[10] Guerraoui R. and Raynal M., The Information Structure
of Indulgent Consensus. IEEE Transactions on Computer-
s, 53(4):453-466, 2004.

[11] Jiménez E., Arévalo S. and Fernández A., Implementing Un-
reliable failure Detectors with Unknown Membership. Sub-
mitted to Information Processing Letters, 2005.

[12] Lamport L., The Part-Time Parliament. ACM Transactions
on Computer Systems, 16(2):133-169, 1998.

[13] Lamport L., Shostak R. and Pease L., The Byzantine Gener-
al Problem. ACM Transactions on programming Languages
and Systems, 4(3):382-401, 1982.

[14] Larrea M., Fernández A. and Arévalo S., Optimal Imple-
mentation of the Weakest Failure Detector for Solving Con-
sensus. Proc. 19th IEEE Int’l Symposium on Reliable Dis-
tributed Systems (SRDS’00), IEEE Computer Society Press,
pp. 52-60, 2000.

[15] Malkhi D., Oprea F. and Zhou L., \ Meets Paxos: Lead-
er Election and Stability without Eventual Timeley Links.
Proc. 19th Int’l Symposium on DIStributed Computing (DIS-
C’05), Springer Verlag LNCS #3724, pp. 199-213, 2005.

[16] Mostefaoui A., Mourgaya E., and Raynal M., Asynchronous
Implementation of Failure Detectors. Proc. Int’l IEEE Con-
ference on Dependable Systems and Networks (DSN’03),
IEEE Computer Society Press, pp. 351-360, 2003.

[17] Mostefaoui A., Rajsbaum S., Raynal M. and Travers C.,
From]K^ to \ : a Simple Bounded Quiescent Reli-
able Broadcast-based Transformation. Tech Report #1759,
7 pages, IRISA, University of Rennes 1 (France), 2005.

[18] Mostefaoui A. and Raynal M., Low-Cost Consensus-Based
Atomic Broadcast. 7th IEEE Pacific Rim Int. Symposium on
Dependable Computing (PRDC’2000), IEEE Computer So-
ciety Press, pp. 45-52, 2000.

[19] Mostefaoui A. and Raynal M., Leader-Based Consensus.
Parallel Processing Letters, 11(1):95-107, 20.0.

[20] Mostefaoui A., Raynal M. and Travers C., Crash-resilient
Time-free Eventual Leadership. Proc. 23th Int’l IEEE
Symposium on Reliable Distributed Systems (SRDS’04),
IEEE Computer Society Press, pp. 208-217, Florianopolis
(Brasil), 2004.

[21] Mostefaoui A., Raynal M., Travers C., Patterson S., Agraw-
al A. and El Abbadi A., From Static Distributed Systems to
Dynamic Systems. Proc. 24th Int’l IEEE Symposium on Re-
liable Distributed Systems (SRDS’05), IEEE Computer So-
ciety Press, pp. 109-118, Orlando (Florida), 2005.

[22] Pedone F. and Schiper A., Handling Message Semantics
with Generic Broadcast Protocols. Distributed Computing,
15(2):97-107, 2002.

[23] Raynal M., A Short Introduction to Failure Detectors for
Asynchronous Distributed Systems. ACM SIGACT News,
Distributed Computing Column, 36(1):53-70, 2005.

[24] Yang J., Neiger G. and Gafni E., Structured Derivations of
Consensus Algorithms for Failure Detectors. Proc. 17th In-
t. ACM Symposium on Principles of Distributed Comput-
ing (PODC’98), ACM Press, pp. 297-308, Puerto Vallarta
(Mexico), July 1998.

