
On implementingΩ with
weak reliability and synchrony assumptions

Marcos K. Aguilera1 Carole Delporte-Gallet2 Hugues Fauconnier2 Sam Toueg3

Abstract

We study the feasibility and cost of implementing
Ω—a fundamental failure detector at the core of
many algorithms—in systems with weak reliability
and synchrony assumptions. Intuitively,Ω allows
processes to eventually elect a common leader. We
first give an algorithm that implementsΩ in a weak
systemS where processes are synchronous, but:
(a) any number of them may crash, and (b) only the
output links of an unknown correct process are even-
tually timely (all other links can be asynchronous
and/or lossy). This is in contrast to previous imple-
mentations ofΩ which assume that a quadratic num-
ber of links are eventually timely, or systems that
are strong enough to implement the eventually per-
fect failure detector�P. We next show that imple-
mentingΩ in S is expensive: even if we want an
implementation that tolerates just one process crash,
all correct processes (except possibly one) must send
messages forever; moreover, a quadratic number of
links must carry messages forever. We then show
that with a small additional assumption—the exis-
tence of some unknown correct process whose asyn-
chronous links are lossy but fair—we can imple-
mentΩ efficiently: we give an algorithm forΩ such
that eventually onlyone process (the elected leader)
sends messages.

Contact author: Marcos K. Aguilera

Student paper: No

Type of submission: Regular presentation only

1HP Systems Research Center, 1501 Page Mill Rd, Mail Stop
1250, Palo Alto, CA, 94304, USA, aguilera@hpl.hp.com

2LIAFA, Université D. Diderot, 2 Place Jussieu, 75251, Paris
Cedex 05, France,{cd,hf}@liafa.jussieu.fr

3Department of Computer Science, University of Toronto,
Toronto, sam@cs.toronto.edu

1 Introduction

Background, motivation and results

Failure detectors are basic tools of fault-tolerant dis-
tributed computing that can be used to solve funda-
mental problems such as consensus, atomic broad-
cast, and group membership. For this reason there
has been growing interest in the implementation of
failure detectors [22, 18, 11, 18, 19, 20, 1, 6, 9, 2].

A failure detector of particular interest isΩ [4].
Roughly speaking, withΩ every processp has a local
variableleaderp that contains the identity of a single
process thatp currently trusts to be operational (p
considers this process to be its current leader). Ini-
tially, different processes may have different leaders,
but Ω guarantees that there is a time after which all
processes have thesame, non-faulty leader. Failure
detectorΩ is important for both theoretical and prac-
tical reasons: it has been shown to be the weakest
failure detector with which one can solve consensus
[4], and it is the failure detector used by several con-
sensus algorithms, including some that are used in
practice (e.g., [16, 12, 21, 20, 13]).

In this paper, we study the problem of implement-
ing Ω in systems with weak reliability and synchrony
assumptions, and we are particularly interested in
communication-efficient implementations.

Our starting point are systems where all links are
asynchronous and lossy: messages can suffer arbi-
trary delays or even be lost. In addition, processes
may crash, but we assume that they are synchronous:
their speed is bounded and they have local clocks that
can measure real-time intervals. We denote such a
system byS−.

Since all messages can be lost or arbitrarily de-
layed inS−, it is clear thatΩ cannot be implemented
in such a system. Thus, we make the following ad-
ditional assumption: there is at leastone correct pro-

1

cess whoseoutput links are eventually timely (intu-
itively, this means that there is an unknown bound
δ and a time after which every message sent from
that process is received withinδ time). We call such
a processan eventually timely source, or simply a
source, and we denote byS a systemS− with at
least one source. Note that processes donot know
the identity of the source(s) inS, the time after which
their output links become timely, or the correspond-
ing message delay bound(s). Moreover, except for
the output links of the source(s), all the other links in
S may be asynchronous and/or lossy.

S is a very weak system because processes may
be unable to communicate with each other. InS only
messages sentby the unknown source(s) are guaran-
teed to be received. All other messages, including all
those sentto the source(s), can be lost. Thus, pro-
cesses cannot use sources as “forwarding nodes” to
communicate reliably with each other.

Can one implementΩ in systemS? Note thatΩ
requires that processes eventuallyagree on a com-
mon leader, and it is not obvious how to achieve this
agreement in a system where processes may be un-
able to communicate with each other. For example,
consider a systemS wherep andq cannot communi-
cate (say, all the messages they send are lost). Sup-
pose there are three other processess1, s2 and s3,
such thats1 ands2 behave timely towardsp, ands2
and s3 behave timely towardsq, but the messages
from s1 to q, and those froms3 to p, are often lost
or greatly delayed. Forp, the natural leader candi-
dates ares1 ands2; while for q the candidates ares2
ands3. Any implementation ofΩ must ensure that
p andq eventually agree on the same leader—a non-
trivial task here sincep and q cannot communicate
with each other (or with any other process).

Our first result is an algorithm that implementsΩ
in systemS. So processes are indeed able to agree
on a common leader despite permanent communica-
tion failures and any number of crashes. This al-
gorithm for Ω, however, has a serious drawback: it
forces all the processes to periodically send mes-
sages forever. This is undesirable, and perhaps it
can be avoided. Intuitively, after a process becomes
the common leader,1 it must periodically send mes-
sages forever (because if it crashes, processes must

1Note that processes may never know whether this has al-
ready occurred.

be able to notice this failure and chose a new leader);
but from now on no other process needs to be mon-
itored. Thus, after processes agree on a common
leader, no process other than the leader should have
to send messages. This leads us to the following
definition and a related question. An algorithm for
Ω is communication-efficient if there is a time after
which only one process sends messages. Is there a
communication-efficient algorithm forΩ in system
S?

To answer this question we investigate the com-
munication complexity of implementations ofΩ in
systemS, and we derive two types of lower bounds:
one on the number of processes that must send mes-
sages forever, and one on the number of links that
must carry messages forever. Specifically, we show
that for any algorithm forΩ in S: (a) in every
run all correct processes, except possibly one, must
send messages forever; and (b) in some run at least
(n2− 1)/4 links must carry messages forever, where
n is the number of processes inS. These lower
bounds hold even if we assume that at most one
process may crash. We conclude that there is no
communication-efficient algorithm forΩ in S that
can tolerate one crash.

We next consider how to strengthenS so that com-
munication efficiency can be achieved. Specifically,
since our impossibility result relies on the lack of re-
liable communication inS, we consider the follow-
ing additional assumption: there is at leastone un-
known correct process such that the links to and from
that process arefair. A fair link may lose messages,
but it satisfies the following property: messages can
be partitioned into types, and if messages of some
type are sent infinitely often, then messages of that
type are also received infinitely often. A correct pro-
cess whose input and output links are fair is said to
be afair hub, or simply ahub. We denote byS+ a
systemS with at least one hub (whose identity is not
known).2

S+ is a weak system because it does not ensure
pairwisetimely communication. In fact, inS+ only
messages sentfrom the source(s) are guaranteed to be
eventually timely. All other messages, including all
those sentto the source(s), can be arbitrarily delayed.
Thus, processes cannot use sources as intermediate

2So S+ is a systemS− with at least one eventually timely
sourceand at least one fair hub, whose identities are not known.

2

System Properties

S− Links: asynchronous and lossy
Processes: synchronous and subject to crashes
S− with at least oneeventually timely source

S (i.e., a correct process whoseoutput links
are eventually timely)
S with at least onefair hub

S+ (i.e., a correct process whoseinput and output
links may be lossy but are fair)

Table 1: Systems considered in this paper.

Communication-
System Ω algorithm efficient

Ω algorithm

S− No No
S Yes No

S+ Yes Yes

Table 2: Implementability ofΩ.

nodes to communicate with each other in a timely
way.

Our next result is acommunication-efficient algo-
rithm for Ω in S+. We derive this algorithm in two
stages: we first give a simpler algorithm for a sys-
temS whereall the links are fair (rather than just the
links of an unknown hub). We then modify this algo-
rithm so that it works inS+. Both algorithms tolerate
any number of crash failures (in addition to message
losses in lossy links). Tables 1 and 2 summarize our
results on the implementability (and communication
efficiency) ofΩ.

In summary, our contributions are the following:

1. We study the feasibility and cost of imple-
mentingΩ—a fundamental failure detector at
the core of many algorithms—in systems with
weak reliability and synchrony assumptions.

2. We give the first algorithm that implementsΩ
in a weak system where only the output links
of some unknown correct process are eventu-
ally timely (all other links can be asynchronous
and/or lossy) . This is in contrast to previous im-
plementations ofΩ which require systems with
a quadratic number of eventually timely links,
or systems that are strong enough to implement
�P.

3. We show that implementingΩ in this weak
system is expensive: all correct processes (ex-

cept possibly one) must send messages forever;
moreover, a quadratic number of links must
carry messages forever. This holds even if we
want an implementation that tolerates just one
process crash.

4. We then show that with a small additional
assumption—the existence of some unknown
correct process whose asynchronous links are
lossy but fair—we can implementΩ efficiently,
i.e, such that eventually only one process (the
elected leader) sends messages.

As a final remark, we note that theeventually per-
fect failure detector �P3 cannot be implemented in
systemS. So S is an example of a system that is
strong enough to implementΩ but too weak to im-
plement�P. This, together with our results on the
cost of implementingΩ in S andS+, partially an-
swers some questions posed by Keidar and Rajsbaum
in their 2002 PODC tutorial [15].

Related work

Related work concerns theuse of Ω to solve agree-
ment problems (e.g., consensus and atomic broad-
cast), and theimplementation of Ω in various types
of partially synchronous systems [10].

Ω is the weakest failure detector that can be used
to solve consensus and atomic broadcast in systems
with a majority of correct processes [5, 4], and it
is the failure detector required by several algorithms
[16, 17, 12, 21, 20, 3, 13].

A simple implementation ofΩ consists of imple-
menting�P first and outputting the smallest process
currently not suspected by�P [16, 8, 15]. But this
approach has serious drawbacks. In particular, it re-
quires a system that is strong enough to implement
�P (a failure detector that is strictly stronger than
Ω), and it requiresall processes to send messages
forever (just to implement�P).

Several papers have focused on reducing the com-
munication overhead of failure detector implementa-
tions. The algorithm in [18] implements failure de-
tector�S4 in a way that onlyn links carry messages

3Informally, �P ensures two properties: (a) any process that
crashes is eventually suspected by every correct process, and (b)
there is a time after which correct processes are never suspected.

4Informally, �S ensures two properties: (a) any process that

3

forever. But this algorithm requires very strong sys-
tem properties, namely, that no message is ever lost,
and all links are eventually timely in both directions.
[19] has an algorithm forΩ, but the paper assumes
some strong system properties: all links are eventu-
ally reliable and timely.

Another communication-efficient implementation
of Ω was given in [1]. In that implementation, only
the links to and from some (unknown) correct pro-
cess need to be eventually timely, all other links can
be asynchronous and lossy. This system assumption
is weaker than the ones in [18, 19]. But it is stronger
than the one we assume here forS+: indeed it is
strong enough to allow the implementation of�P
(which cannot be implemented inS+).

Another related result is the algorithm that trans-
forms �S to Ω given in [7]. Note that one way to
implementΩ is to first implement�S, and then use
this transformation algorithm. But this approach can-
not be used to implementΩ in systemS: In fact, the
transformation algorithm in [7] requires all processes
to reliably communicate with each other (which may
not be possible inS). Moreover, one must implement
�S first, and it is not clear how this can be done by
a communication-efficient algorithm inS+, short of
using our algorithm, which already implementsΩ.

Roadmap

We first give an informal model of systemsS−, S
andS+ (Section 2). We then consider the problem
of implementingΩ in S: we first give an algorithm
for Ω in S (Section 3), and then derive lower bounds
on the communication complexity of this problem
(Section 4). We next strengthen systemS to de-
rive communication-efficient algorithms forΩ: the
first algorithm assumes that all links are fair (Sec-
tion 5.1), the second one assumes that the links of
some unknown correct process are fair, i.e., it works
in systemS+ (Section 5.2). A brief discussion con-
cludes the paper. Because of space limitations, all
proofs have been moved to an optional appendix.

crashes is eventually suspected by every correct process, and (b)
there is a time after which some correct process is never sus-
pected.

2 Informal model

We consider distributed systems withn ≥ 2 pro-
cessesΠ = {0, . . . , n − 1} that can communicate
with each other by sending messages through a set
of unidirectional linksΛ. We now describe the be-
havior of processes and links in more detail.

Processes. Processes execute by taking steps. In
a step a process can either receive a set of messages
and then change its state,or it can send a message
and then change its state.5 The value of a variable of
a process at timet is the value of that variable after
the process takes a step at timet. There is a lower
and upper bound on the rate of execution (number of
steps per time unit) of any non-faulty process. Pro-
cesses have clocks that are not necessarily synchro-
nized, but we assume that they can accurately mea-
sure intervals of time (it is easy to extend our results
to clocks with bounded drift rates).

A process can fail by permanently crashing, in
which case it stops taking steps. We say thatprocess
p is alive at time t if it has not crashed by timet. We
say a process iscorrect if it is always alive. We say a
process isfaulty if it is not correct. Unless we explic-
itly state otherwise, we consider systems whereany
number of processes may crash.

Links. We assume that the network is fully con-
nected, i.e.,Λ = Π × Π. The unidirectional link
from processp to processq is denoted byp→ q. We
consider various types of links, all of which satisfy
the following property:

• [Integrity]: Processq receives a messagem
from processp at most once, and only ifp pre-
viously sentm to q.6

A link p → q is eventually timely if it satisfies
Integrity and the following property:

• [Eventual timeliness]: There exists aδ and a
time t such that ifp sendsm to q at a timet′ ≥ t
and q is correct, thenq receivesm from p by
time t′ + δ.

5Our lower bounds also hold in a stronger model in which a
process can receive, change state,and send in a single atomic
step.

6We assume that messages are unique, e.g., each message
contains the id of the sender and a sequence number (this is im-
plicit in all our algorithms).

4

The maximum message delayδ associated with an
eventually timely link is not known.

A link that intermittently loses messages may sat-
isfy a fairness property. To define this property, we
assume that messages carry atype in addition to its
data. Fairness requires that if a process sends an in-
finite number of messages of a type through a link
then the link delivers an infinite number of messages
of that type. More precisely, we assume that mes-
sages consists of pairsm = (type , data) ∈ Σ∗ ×Σ∗
whereΣ = {0, 1}. A link p→ q is fair if it satisfies
Integrity and the following property:

• [Fairness]: For everytype , if p sends infinitely
many messages of typetype to q andq is cor-
rect, thenq receives infinitely many messages
of type type from p.

We classify correct processes based on the prop-
erties of their links. Aneventually timely source
(or simply source) is a correct process whoseoutput
links are all eventually timely. (Only theoutgoing
links need to be timely, hence the word “source”.) A
fair hub (or simply hub) is a correct process whose
input and output links are all fair.

Systems. We consider three systems,S−, S, and
S+ that differ on the properties of their links (their
process properties are those described at the begin-
ning of this section). In all three systems all links
satisfy the Integrity property. SystemS− has no fur-
ther requirements; in particular, all links can be asyn-
chronous and/or lossy. In systemS, we assume that
there is at least one eventually timely source (whose
identity is unknown). Except for the output links of
the source(s), all other links can be asynchronous
and/or lossy, and so most pairs of processes may
be unable to communicate inS. SystemS+ is a
strengthening of systemS that allows communica-
tion between all pairs of processes through some un-
known hub. More precisely,S+ is a system with at
least one eventually timely sourceand at least one
fair hub (their identities are not known). Note that in
S+ most pairs of processes may not be able commu-
nicate in a timely fashion: even though they are fair,
the links of the unknown hub(s) can still be asyn-
chronous and/or lossy.

2.1 Failure detector Ω

The formal definition of failure detectorΩ is given in
[5, 4]. Informally,Ω outputs, at each processp, a sin-
gle process denotedleaderp, such that the following
property holds:

• There exists a correct process� and a time after
which, for every alive processp, leaderp = �.

If at time t, leaderp contains the same correct pro-
cess� for all alive processesp, then we say that� is
the leader at time t. Note that at any given time
processes do not know if there is a leader; they only
know that eventually a leader emerges and remains.

2.2 Communication efficiency

We are interested in failure detector algorithms that
minimize the usage of communication links. Note
that in any reasonable implementation of a failure de-
tector, some process needs to send messages forever.
However, not every process needs to do that. We
say that an implementation of failure detectorΩ is
communication-efficient if there is a time after which
only one process sends messages.

3 Implementing Ω in system S

We now give an algorithm that implementsΩ in
S. This algorithm ensures that processes eventually
agree on a common leader, even though most pairs of
processes may be unable to communicate with each
other (recall that inS all links can be asynchronous
and lossy, except for theoutput links of some un-
known correct process).

The basic idea is that each process selects its
leader among the processes that seem to be currently
alive. But since almost all links inS may suffer from
arbitrary delays and/or losses, there are several prob-
lems that must be overcome. In particular: (a) dif-
ferent processes may have different views of which
processes are currently alive, and the different views
may never converge, (b) some processes may re-
peatedly alternate between appearing to be alive and
dead, and continue to do so forever. Such problems
complicate the task of selecting a common and per-
manent leader. For example, processp cannot simply
select as its leader the “smallest” process that seem

5

to be currently alive: problem (a) may cause differ-
ent processes to have different leaders (forever), and
problem (b) may causep to change its leader forever.

To overcome these and other similar difficulties,
processes maintain “accusation” counters, and they
indirectly use the unknown source(s) to help them
converge on the same correct process as the leader.
The algorithm, described in full in Figure 1, roughly
works as follows. Each processp maintains a set
set2 of processes that it considers to be currently
alive: these arep’s current candidates for leader-
ship. To select among the different candidates,p also
maintains acounter [q] for each processq, which is
p’s rough estimate of how many timesq’s was previ-
ously suspected of being dead. Processp selects as
its leader the process� in its set2 that has the small-
est(counter [�], �) tuple. (The leader is recomputed
whenever the setset2 or the counters are updated).

To help each process maintain itsset2
and counter variables, every processq sends
(ALIVE , q, counter [q]) messages periodically, say
everyη time, to all other processes (note that most or
all of these messages may be lost or delayed arbitrar-
ily). If a processp receives(ALIVE , q, counter [q])
directly from q, p relays the messageonce to every
other process, and it also resets a local timer, denoted
timer1 (q), to expire afterTimeout1 [q] time units7,
which is the maximum delay thatp expects until
p receives the next(ALIVE , q, counter [q]) directly
from q.8 If timer1 (q) expires before receiving
this message directly fromq, then p sends an
ACCUSATION message toq. When q receives an
ACCUSATION message, it increments itscounter [q].

If p receives(ALIVE , q, counter [q]) eitherdirectly
from q or relayed by another process, thenp adds
q to its set set2 , it updates itscounter [q] vari-
able accordingly, and it also resets a timer, de-
notedtimer2 (q), for when it expects to receive the
next (ALIVE , q, counter [q]) (directly or relayed). If
timer2 (q) expires before receiving this message,
thenp removesq from set2 .9

7Note thattimer1 (q) is set to a time interval rather than an
absolute time. The timer is decremented until it expires.

8In the algorithm’s code, shown in Figure 1,p also addsq to
a set denotedset1, but this set is only used to facilitate the proof
of correctness.

9Sincep does not know the maximum message delays asso-
ciated with eventually timely links, every time a timer expiresp
increments the associated timeout.

Code for each processp:

procedure updateLeader()
1 leader← � such that(counter[�], �) =

min{(counter[q], q) : q ∈ set2}
on initialization:
2 ∀q �= p : Timeout1[q]← η + 1
3 ∀q �= p : Timeout2[q]← η + 1
4 ∀q �= p : resettimer1(q) to Timeout1[q]
5 ∀q �= p : resettimer2(q) to Timeout2[q]
6 ∀q : counter[q]← 0
7 set1← {p}; set2← {p}
8 start tasks 1 and 2

task 1:
9 loop forever
10 send(ALIVE , p, counter[p]) to every process except

p everyη time

task 2:
11 upon receive(ALIVE , q, c) from q ′ do
12 if q = q′ then
13 resettimer1(q) to Timeout1[q]
14 set1← set1 ∪ {q}
15 send(ALIVE , q, c) to every process exceptp andq

16 resettimer2(q) to Timeout2[q]
17 set2← set2 ∪ {q}
18 counter[q]← max{counter[q], c}
19 updateLeader()

20 upon expiration oftimer1(q) do
21 send ACCUSATION to q
22 set1← set1− {q}
23 Timeout1[q]← Timeout1[q] + 1
24 resettimer1(q) to Timeout1[q]

25 upon expiration oftimer2(q) do
26 set2← set2− {q}
27 Timeout2[q]← Timeout2[q] + 1
28 resettimer2(q) to Timeout2[q]
29 updateLeader()

30 upon receive ACCUSATION do
31 counter[p]← counter[p] + 1

Figure 1: Implementation ofΩ for systemS.

6

Theorem 1 The algorithm in Figure 1 implements Ω
in system S.

4 Impossibility of communication-
efficient Ω in system S

We now consider the communication complexity of
implementations ofΩ in systemS. Specifically we
give two types of lower bounds: one is on thenum-
ber of processes that send messages forever, and the
other is on thenumber of links that carry messages
forever. A corollary of these lower bounds is that
there is no communication-efficient implementation
of Ω in systemS. The bounds that we derive here ap-
ply even if we assume thatat most one process may
crash.

Theorem 2 Consider any algorithm for Ω in a sys-
tem S with n processes where at most one process
may crash.

1. In everyrun, all correct processes, except pos-
sibly one, send messages forever.

2. In somerun, at least �(n2−1)
4 	 links carry mes-

sages forever.

From Theorem 2(1), we immediately get the fol-
lowing:

Corollary 3 There is no communication-efficient al-
gorithm for Ω in a system S with n ≥ 3 processes,
even if we assume that at most one process may
crash.

5 Communication-efficient imple-
mentations of Ω

We now seek algorithms forΩ that require only one
process to send messages forever (this also implies
that the number of links that carry messages forever
is linear rather than quadratic). In order to achieve
this, Theorem 2 implies that we must strengthen
the system modelS. In this section, we first give
a communication-efficient algorithm forΩ that as-
sumes thatall links in S are fair (note that this system
is stronger thanS+). We next modify this algorithm
so that it works in a systemS where only the links

to and from some unknown correct process are fair,
i.e., it works in systemS+.

5.1 Efficient implementation in a system S
where all links are fair

We now seek a communication-efficient algorithm
for Ω in a systemS (i.e., a system with an eventu-
ally timely source) with the extra assumption that all
links are fair. One simple attempt to get communica-
tion efficiency is as follows. Each process: (a) sends
ALIVE messagesonly if it thinks it is the leader,
(b) maintains a set of processes, calledContenders,
from which it received an ALIVE message recently
(an adaptive timeout mechanism is used to determine
if a message is “recent”), and (c) chooses as leader
the process with smallest id in its current set of con-
tenders.10 Such a simple algorithm would work in a
system whereall correct processes are sources. But
in our system, it would fail: if theonly source hap-
pens to be a process with a large id, the leadership
could forever oscillate between the smaller correct
processes.

One way to fix this problem is to estimate for each
process the number of times it was previously ac-
cused of being slow. These accusation counters—
rather than the process ids—are then used to se-
lect the leader among the current set of contenders.
More precisely, each process keeps a counter on the
number of times it was accused of being slow, and
includes this counter in the ALIVE messages that
it sends. Every process keeps the most up-to-date
counter that it received from every other process,
and picks as its leader the process with the smallest
counter among the current set of contenders (using
process id to break ties). If a process times out on a
current contender, it sends an “accusation” message
to this contender, which causes the contender to in-
crement its own accusation counter. The hope is that
the counter of eachsource remains bounded (because
all its links are eventually timely), and so the source
with the smallest counter is eventually selected as the
leader by all.

This algorithm, however, does not work, because
the accusation counter of a source may keep increas-

10A process always considers itself to be a contender, so if it
does not have recent ALIVE messages from any other process,
the process picks itself as leader.

7

ing forever! To see this, note that a source may stop
contending for leadership voluntarily, when it selects
another process as its leader (a non-source contender
with a smaller counter). When it does so, the source
stops sending ALIVE messages (for communication
efficiency). Unfortunately, this triggers processes to
timeout on the source and send ACCUSATION mes-
sages that cause the source to increment its counters.
Later, the accusation counter of the non-source may
also increase (due to some legitimate accusations),
and then the source may retake the leadership. In this
way, the leadership may oscillate between the source
and some non-sources forever.

To fix this problem, the source should increment
its own accusation counter only if it receives a “le-
gitimate” accusation, i.e., one that was caused by
the delay or loss of one of its ALIVE message (and
not by the fact that the source voluntarily stopped
sending them). To determine whether an accusa-
tion is legitimate, each processp keeps track of the
number of times it hasvoluntarily given up contend-
ing for the leadership in the past—this is its current
phase number—and it includes this number in each
ALIVE message that it sends. If any processq times
out on p and wants to accusep, it must now in-
clude its own view ofp’s current phase number in
the ACCUSATION that it sends top; p considers this
accusation to be legitimate only if the phase num-
ber that it contains matches its own. Furthermore,
wheneverp gives up the leadership voluntarily, it in-
crements its own phase number: this causesp to ig-
nore all the spurious accusations that result from its
silence.

TheΩ algorithm that embodies the above ideas is
shown in Figure 2.

Theorem 4 The algorithm in Figure 2 implements
Ω in a system S where all links are fair, and it is
communication-efficient.

5.2 Efficient implementation in system S+

We now describe a communication-efficient algo-
rithm for Ω for a systemS where only the links to
and from some unknown correct process are fair, i.e.,
it works in systemS+. In this system the previous al-
gorithm (Figure 2) does not work because some links
can now experience arbitrary message losses.

Code for each processp:
procedure updateLeader()
1 leader← � such that(counter[�], �) =

min{(counter[q], q) : q ∈ Contenders}
on initialization:
2 ∀q �= p : Timeout[q]← η + 1
3 ∀q �= p : timer(q)← off
4 ∀q : ph[q]← 0
5 ∀q : counter[q]← 0
6 Contenders← {p}
7 leader← p
8 start tasks 1 and 2

task 1:
9 loop forever
10 while leader = p do
11 send(ALIVE , counter[p], ph[p]) to every

process exceptp everyη time
12 ph[p]← ph[p] + 1
13 while leader �= p do nop

task 2:
14 upon receive(ALIVE , d, i) from q do
15 Contenders← Contenders ∪ {q}
16 counter[q]← max{counter[q], d}
17 ph[q]← max{ph[q], i}
18 resettimer(q) to Timeout[q]
19 updateLeader()

20 upon expiration oftimer(q) do
21 Contenders← Contenders− {q}
22 send(ACCUSATION, ph[q]) to q
23 Timeout[q]← Timeout[q] + 1
24 updateLeader()

25 upon receive(ACCUSATION, i) do
26 if i = ph[p] then
27 counter[p]← counter[p] + 1
28 updateLeader()

Figure 2: Communication-efficient implementation
of Ω for a systemS where all links are fair.

8

The most obvious problem, and also the easiest
one to solve, is that the ACCUSATION messages sent
by a processp to another processq may never reach
q: the link p → q may be dead. The obvious so-
lution is for p to send each ACCUSATION of q to all
processes (including the unknown fair hub); any pro-
cess that receives such a message relays it once to
q. This scheme preserves communication efficiency:
after the permanent leader emerges, there are no new
accusations, and so the relaying stops.

A more subtle problem, and a tougher one to solve,
is that two leader contendersp andq may partition
the processes in two setsΠp andΠq, such that pro-
cesses inΠp (includingp) and those inΠq (including
q) havep and q as their permanent leader, respec-
tively. This can occur as follows: (a) the sources
and the fair hubh are in Πp, and they are distinct
from p, (b) processes inΠq receive timely ALIVE

messages fromq, but they never hear fromp, (c) pro-
cesses inΠp receive timely ALIVE messages fromp,
but, except forh, they never hear fromq, and (d)h
receives timely ALIVE messages from bothp andq,
but chosesp as its permanent leader. In this scenario,
nobody ever sends ACCUSATION messages top or
q. Moreover,p and q never hear from each other.
So bothp andq keep thinking of themselves as the
leader, forever.

One attempt to solve this problem is to relay all
the ALIVE messages (like the ACCUSATION mes-
sages) so that the contenders for leadership, such
asp andq in the above scenario, can all hear from
each other. Although this solution works, it is not
communication-efficient because it forcesall pro-
cesses to send messages forever: the elected leader
does not stop sending ALIVE messages, and each
ALIVE is relayed by all.

To prevent partitioning while preserving com-
munication efficiency, we use the following idea:
roughly speaking, if a processr hasp as its current
leader, but receives an ALIVE message from a pro-
cessq �= p, thenr sends a “CHECK” message telling
q about the existence ofp (and some other relevant
information aboutp). CHECK messages can be lost,
but if: (a) r is the fair hubh, (b) q keeps sending
ALIVE messages toh, and (c)h continues to pre-
fer p as its leader, thenq will eventually receive a
CHECK message fromh and find out about its “ri-
val” p. If this happens,q “challenges” the leader-

ship ofp by sending an ACCUSATIONs top if p does
not appear to be timely. This scheme prevents the
problematic scenario mentioned above, and it can be
shown to work while preserving communication ef-
ficiency: after the common leader is elected, all the
ALIVE messages come from that leader, and so there
are no more CHECK messages.

All these ideas are incorporated in the algorithm of
Figure 3. Note that ACCUSATION and CHECK mes-
sages have an extra field containing the originator of
the message (as opposed to the relayer).

Theorem 5 The algorithm in Figure 3 implements Ω
in system S+, and it is communication-efficient.

6 Final remarks

In their 2002 PODC tutorial [15], Keidar and Rajs-
baum propose several open problems related to the
implementation of failure detectors in partially syn-
chronous systems. In particular, they ask what is the
“weakest timing model where�S and/orΩ are im-
plementable but�P is not”. As a partial answer to
this question, we note that�P is not implementable
in systemS. In fact, in the full paper we show that
this holds even if we strengthenS by assuming that:
(a) all the links inS are reliable (i.e., no message
is ever lost), and (b) processes know the identity of
the source(s) inS. SoS is an example of a system
that is strong enough to implementΩ but too weak to
implement�P. Similarly, S+ is strong enough for
an efficient implementation ofΩ, but still too weak
for implementing�P. Intuitively, this is because the
level of synchrony inS andS+ is not sufficient to get
�P: in both systems only theoutput links of some
correct process(es) are eventually timely. Note that if
we strengthen the synchrony ofS by assuming that
both the input and output links of some correct pro-
cess are eventually timely, then�P becomes imple-
mentable [1].

In [15] Keidar and Rajsbaum also ask: “Is build-
ing �P more costly than�S or Ω?”. Concerning
this question, note that any implementation of�P
(even in a perfectly synchronous system) requires
all alive processes to send messages forever, while
Ω can be implemented such that eventually only the
leader sends messages (even in a weak system such
asS+).

9

Code for each processp:
procedure updateLeader()
1 leader← � such that(counter[�], �) =

min{(counter[q], q) : q ∈ Contenders}
on initialization:
2 ∀q �= p : Timeout[q]← η + 1
3 ∀q �= p : timer(q)← off
4 ∀q : ph[q]← 0
5 ∀q : counter[q]← 0
6 Contenders← {p}
7 leader← p
8 start tasks 1 and 2

task 1:
9 loop forever
10 while leader = p do
11 send(ALIVE , counter[p], ph[p]) to every

process exceptp everyη time
12 ph[p]← ph[p] + 1
13 while leader �= p do nop

task 2:
14 upon receive(ALIVE , d, i) from q do
15 Contenders← Contenders ∪ {q}
16 counter[q]← max{counter[q], d}
17 ph[q]← max{ph[q], i}
18 resettimer(q) to Timeout[q]
19 updateLeader()
20 if q �= leader then
21 send(CHECK, leader, ph[leader]) to q

22 upon receive(CHECK, q, i) do
23 if timer(q) is off then
24 ph[q]← max{ph[q], i}
25 resettimer(q) to Timeout[q]

26 upon expiration oftimer(q) do
27 Contenders← Contenders− {q}
28 send(ACCUSATION, q, ph[q]) to every

process exceptp
29 Timeout[q]← Timeout[q] + 1
30 updateLeader()

31 upon receive(ACCUSATION, q, i) do
32 if q = p then
33 if i = ph[p] then
34 counter[p]← counter[p] + 1
35 updateLeader()
36 else send(ACCUSATION, q, i) to q

Figure 3: Communication-efficient implementation
of Ω for systemS+.

Finally, it is also worth pointing out that the above
results provide an alternative proof that�P is strictly
stronger than�S[14]: this can be deduced from the
fact thatΩ (and hence�S) is implementable in sys-
temS but�P is not.

References
[1] M. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg.

Stable leader election (extended abstract). InProceedings of the
15th International Symposium on Distributed Computing, LNCS
2180, pages 108–122. Springer-Verlag, 2001.

[2] M. Bertier, O. Marin, and P. Sens. Implementation and perfor-
mance evaluation of an adaptable failure detector. InProceed-
ings of the 2002 International Conference on Dependable Sys-
tems and Networks, June 2002.

[3] M. Castro and B. Liskov. Practical byzantine fault tolerance
and proactive recovery.ACM Transactions on Computer Systems
(TOCS), 20(4):398–461, Nov. 2002.

[4] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure
detector for solving consensus.J. ACM, 43(4):685–722, July
1996.

[5] T. D. Chandra and S. Toueg. Unreliable failure detectors for re-
liable distributed systems.J. ACM, 43(2):225–267, Mar. 1996.

[6] W. Chen, S. Toueg, and M. K. Aguilera. On the quality of service
of failure detectors.IEEE Transactions on computers, 1(51):13–
32, Jan. 2002.

[7] F. Chu. ReducingΩ to �W . Information Processing Letters,
67(6):298–293, Sept. 1998.

[8] R. De Prisco, B. Lampson, and N. A. Lynch. Revisiting the Paxos
algorithm. InProceedings of the 11th Workshop on Distributed
Algorithms, LNCS 1320, pages 11–125. Springer-Verlag, Sept.
1997.

[9] B. Deianov and S. Toueg. Failure detector service for dependable
computing. InProceedings of the 2000 International Conference
on Dependable Systems and Networks (ICDSN/FTCS-30), pages
B14–B15. IEEE computer society press, June 2000.

[10] C. Dwork, N. A. Lynch, and L. Stockmeyer. Consensus in the
presence of partial synchrony.J. ACM, 35(2):288–323, Apr.
1988.

[11] C. Fetzer, M. Raynal, and F. Tronel. A failure detection protocol
based on a lazy approach. Research Report 1367, IRISA, Nov.
2000.

[12] E. Gafni and L. Lamport. Disk paxos. InProceedings of the
14th International Symposium on Distributed Computing, LNCS
1914, pages 330–344. Springer-Verlag, 2000.

[13] R. Guerraoui and P. Dutta. Fast indulgent consensus with zero
degradation. InProceedings of the 4th European Dependable
Computing Conference, Oct. 2002.

[14] V. Hadzilacos, 2002. Comparison between�S and�P , per-
sonal communication.

[15] I. Keidar and S. Rajsbaum. On the cost of fault-tolerant
consensus when there are no faults-a tutorial. InTutorial
21th ACM Symposium on Principles of Distributed Comput-
ing(http://theory.lcs.mit.edu/ idish/ftp/podc02-tutorial.ppt), July
2002.

[16] L. Lamport. The Part-Time parliament.ACM Transactions on
Computer Systems, 16(2):133–169, May 1998.

[17] L. Lamport. Paxos made simple.SIGACT News, 32(4):18–25,
Dec. 2001.

[18] M. Larrea, S. Arévalo, and A. Fern´andez. Efficient algorithms to
implement unreliable failure detectors in partially synchronous
systems. InProceedings of the 13th International Symposium on
Distributed Algorithms, LNCS 1693, pages 34–48, Sept. 1999.

[19] M. Larrea, A. Fern´andez, and S. Ar´evalo. Optimal implemen-
tation of the weakest failure detector for solving consensus. In
Proceedings of the 19th Symposium on Reliable Distributed Sys-
tems, pages 52–59. IEEE Computer Society Press, Oct. 2000.

[20] M. Larrea, A. Fernandez, and S. Arevalo. Eventually consistent
failure detectors. InACM Symposium on Parallel Algorithms and
Architectures, pages 326–327, 2001.

[21] A. Mostéfaoui and M. Raynal. Leader-based consensus.Parallel
Processing Letters, 11(1):95–107, 2001.

[22] R. van Renesse, Y. Minsky, and M. M. Hayden. A gossip-based
failure detection service. InProceedings of Middleware’98, Sept.
1998.

10

Optional appendices

A Proof of Theorem 1

We now show correctness of the algorithm in Fig-
ure 1. Lets be an eventually timely source inS.
Since all the output links ofs are eventually timely
(and the rate of process execution is bounded) there
is a constant∆ and a time after which every message
sent bys takes at most∆ time to be received and
processed.

Lemma 6 For every process p, we always have p ∈
set1 p and p ∈ set2 p.

Proof. Every processp initializes its setsset1p and
set2 p to {p}. Sincep does not set timers for itself, it
never removes itself from these sets. �

Lemma 7 For every correct process q, there is a
time after which s ∈ set1q and s ∈ set2 q. Fur-
thermore, counters[s] is bounded.

Proof. By Lemma 6,s ∈ set1 s and s ∈ set2 s.
Now consider any correct processq �= s. Process
s sends an(ALIVE , s, ∗) to q every η time. Since
s is an eventually timely source, there is a time af-
ter which every(ALIVE , s, ∗) thats sends is directly
received byq, and it is received withinη + ∆ time
from the timeq received the previous(ALIVE , s, ∗)
from s. Sinceq increases its timerstimeout1 (s) and
timeout2 (s) every time they expire, there is a time
after which they will cease expiring. Thenceforth,
s ∈ set1 q and s ∈ set2 q, and q ceases to send
ACCUSATION messages tos. Since eventually all
correct processes stop sending ACCUSATION mes-
sages tos, counters[s] is bounded. �

Lemma 8 For every correct process p, if
counterp[p] is bounded then there exists a time
after which p ∈ set1s.

Proof. By Lemma 6, the lemma obviously holds
for the case thatp = s. Now consider a correct
processp �= s. We prove the contrapositive of
the lemma. Suppose thatp /∈ set1s infinitely of-
ten. There are two possible cases. (A) Processp
is added to and removed fromset1s infinitely of-
ten. In this case, every times removesp from set1s,

s sends an ACCUSATION message top, and sos
sends ACCUSATION messages top infinitely often.
(B) There is a time after whichp is never inset1s.
In this case, there is a time after whichs never re-
ceives(ALIVE , p, ∗) messages directly fromp. Thus
timer1 (p) expires infinitely often ats, and sos
sends ACCUSATION messages top infinitely often.
Sinces is a source, the link froms to p is eventu-
ally timely. Thus, in both cases (A) and (B),p re-
ceives ACCUSATION messages froms infinitely of-
ten, andp incrementscounterp[p] infinitely often, so
counterp[p] is not bounded. �

Lemma 9 For every correct process p, if there exists
a time after which p ∈ set1s, then there exists a time
after which for every correct process q, p ∈ set2q.

Proof. Let p be a correct process. Ifp = s, then,
by Lemma 7, eventuallyp ∈ set2q for every correct
processq. Now assumep �= s. Suppose that there
exists a time after whichp ∈ set1s. Thus, there is a
time after whichtimer1 (p) at s never expires. This
implies there is some time intervalζ and a time af-
ter whichs periodically receives(ALIVE , p, ∗) mes-
sages, directly fromp, at least once everyζ time. So
there is a time after whichp ∈ set2s. Moreover, ev-
ery times receives a(ALIVE , p, ∗) message directly
from p, it sends(ALIVE , p, ∗) to all processesq ex-
cept for s and p. Therefore, eventually every cor-
rect processq such thatq �= p and q �= s receives
(ALIVE , p, ∗) from s at least once everyζ + ∆ time.
So, there exists a time after which for every correct
processq such thatq �= p, p ∈ set2q. For the case
q = p, note that by Lemma 6,q ∈ set2q (always)
and this concludes the proof. �

Henceforth,vart
p denotes the value of the local vari-

ablevar of p at timet.

Lemma 10 For every process p and every correct
process q, either there is a time after which p �∈
set2 q or for every time t, there is a time after which
counter q[p] ≥ counter t

p[p].

Proof. For p = q, the lemma is trivial. Now
assumep �= q and suppose thatp ∈ set2q in-
finitely often. Thus,q must receive messages of type
(ALIVE , p, counter[p]) infinitely often. Lett be any
time. There must be a timet′ > t whenq receives

11

(ALIVE , p, c) originally sent byp after timet, soc ≥
counter t

p[p]. Then at timet′, q sets itscounterq[p]
to c, and so we have:counterq[p] ≥ counter t

p[p].
The lemma now follows sincecounterq[p] is mono-
tonically nondecreasing. �

Lemma 11 For every correct process p:

1. If counterp[p] is bounded, then there exists a
value vp and a time after which for every correct
process q, p ∈ set2 q and counterq[p] = vp.

2. If counterp[p] is not bounded, then for ev-
ery correct process q, either counterq[p] is not
bounded or there is a time after which p �∈
set2 q.

Proof. Let p be a correct process.
(1) Supposecounterp[p] is bounded. Then, by
Lemma 8, there exists a time after whichp ∈ set1s.
Therefore, by Lemma 9, there exists a time after
which for every correct processq, p ∈ set2q. Thus,
by Lemma 10, for all correct processesq, for all
t there exists a time after whichcounterq[p] ≥
counter t

p[p]. Since counterp[p] is bounded and
monotonically nondecreasing, there exists a valuevp
and a time after whichcounterp[p] = vp. Moreover,
it is always true thatcounterp[p] ≥ counter q[p].
Therefore, there exists a time after which, for all cor-
rect processesq, counterq[p] = vp.
(2) Supposecounterp[p] is not bounded. Letq be
any correct process. Either there is a time after which
p �∈ set2 q, or p ∈ set2 q infinitely often. In the latter
case, Lemma 10 implies thatcounterq[p] is also not
bounded. �

Lemma 12 If process p is not correct then for ev-
ery correct process q there is a time after which
p /∈ set2 q.

Proof. After p crashes, it stops sending ALIVE mes-
sages. So there is a time after which no process re-
ceives(ALIVE , p, . . .) from any process. Thus, for
every correct processq, there is a time after which
p �∈ set2 q. �

Lemma 13 There exists a correct process � and
a time after which, for every correct process q,
leader q = �.

Proof. Let B be the set of correct processesp such
that counterp[p] is bounded. By Lemma 7,s ∈ B,
thus B is not empty. By Lemma 11(1), for every
processp ∈ B, there is a corresponding integervp
and a time after which for every correct processq,
p ∈ set2 q andcounterq[p] = vp (forever). Let� de-
note the processp in B with the smallest correspond-
ing tuple(vp, p). We now show that eventually every
correct processq selects� as its leader (forever).

Note that correct processq selects its leader from
the setset2 q (by Lemma 6, this set is never empty).
Since there is a time after which� ∈ set2q, even-
tually � is a permanent candidate for leadership at
q. We now show that for any other processp �= �:
(*) there is a time after which eitherp /∈ set2q or
(counter q[p], p) > (counter q[�], �). This implies
that eventuallyq selects� as its leader, forever.

To show (*) holds, consider the following 3 pos-
sible cases. Ifp is not correct then, by Lemma 12,
eventuallyp /∈ set2q (forever). Now suppose that
p is correct. If counterp[p] is bounded, thenp is
in B; so, by our selection of� in B, eventually
(counter q[p] = vp, p) > (counter q[�] = v�, �) for-
ever. Finally, if counterp[p] is not bounded, then,
by Lemma 11(2), there is a time after whichp /∈
set2 q, or counter q[p] > counter q[�] = v� (because
counter q[p] is unbounded and monotonically nonde-
creasing). In all cases (*) holds. �

From the above, Theorem 1 follows.

B Proof of Theorem 2

The theorem trivially holds ifn = 1. Henceforth, we
assume thatn ≥ 2. Consider any algorithm that im-
plementsΩ in a systemS where at most one process
may crash. We first observe the following:

Fact 14 For any run and any correct process p, if
there is a time after which p does not receive any
messages from other processes, then there is a time
after which the leader of p is p (forever).

To see this, consider a runR such that after some
time t, some correct processp does not receive any
messages. Without loss of generality, we can assume
that no process crashes inR (because if any process
f crashes at some timet′ in R, we can modifyR to

12

get a similar run wheref never crashes, but all its
outgoing links die permanently at timet′; this modi-
fied run is indistinguishable fromR to all processes,
except for processf who is now correct). Suppose,
by contradiction, that inR there is a time after which
the leader ofp is a processq �= p. Let R′ be a run
identical toR up to timet, and such that at some
time t′ > t: (a) processq crashes, and (b) all the
input links of p “die” permanently, while theoutput
links of p become timely and stop losing messages
(p is a source). Processp receives exactly the same
messages inR andR′. Sincep cannot distinguish
betweenR andR′, in R′ there is a time after which
the leader ofp is q, even thoughq crashes—a contra-
diction that concludes the proof of Fact 14.

We now prove part (1) of the theorem. Suppose, by
contradiction, that there is a runR such that two cor-
rect processesp andq do not send any messages after
some timet. Without loss of generality, we can as-
sume that inR: (a) all the output links ofp andq are
eventually timely (and so bothp andq are sources),
and (b) no process crashes (the argument is as be-
fore: we can “replace” the crash of a process, by the
simultaneous and permanent failure of all its outgo-
ing links).

We first show that inR there is a time after which
the leader ofq is not p. To see this, letR′ be a run
identical toR except thatp crashes inR′ after time
t. Note that, except forp, no process can distinguish
between runsR andR′. Sincep is faulty in R′, in
R′ there is a time after which the leader ofq is notp;
thus, inR there is a time after which the leader ofq
is notp.

Now let R′′ be a run identical toR, except that
in R′′ after timet: (1) all the output links ofp die
permanently, and (2) all the input links ofp die per-
manently, except for the link fromq to p (which, as in
run R, is eventually timely). Note that, except forp,
no process can distinguish between runsR andR′′.
Thus, inR′′ there is a time after which the leader of
q is not p (as it was the case in runR). In R′′, p
ceases to receive messages, and so, by Fact 14, there
is a time after which the leader ofp is p. Thus, in
R′′ correct processesp andq do not reach agreement
on a common leader—a contradiction that concludes
the proof of the first part of the theorem.

We now prove part (2) of the theorem. Partition
the set of processes ofS into setA with �n2 	 pro-
cesses, and setB with �n2 � processes. Consider run
R such that: (a) all then processes are correct, (b)
all the links between processes inA are eventually
timely, (c) A has a sources, so all the links froms
to processes inB are eventually timely, (d) for every
processr �= s in A, all the links fromr to processes
in B are permanently dead, and (e) the output links
from every process inB are permanently dead. So in
run R, s is the only process that is able to commu-
nicate with any processp ∈ B; all messages sent by
other processes top are lost.

Note that in runR there is a time after which the
leader of any correct processq is not p. Intuitively,
this is becausep may eventually crash, and sincep’s
output links are permanently dead,q would not be
able to notice this crash (we omit this proof as it is
similar to one given above).

We claim that inR, every process inA sends mes-
sages forever to every process inB. Suppose, for
contradiction, that inR some processq ∈ A does
not send messages forever to some processp ∈ B.
We consider two possible cases.

Supposeq = s. Recall that inR, q (= s) is the
only process able to communicate withp. Since inR
there is a time after whichq does not send messages
to p, then eventuallyp stops receiving messages. So,
by Fact 14, inR there is a time after which the leader
of p is p. Recall that inR there is a time after which
the leader ofq is not p. Thus, in runR correct pro-
cessesp andq do not reach agreement on a common
leader—a contradiction.

Now supposeq �= s. Let R′ be a run which is
similar toR, except that the source happens to beq
rather thans. More precisely,R′ is like R, except
that all the links froms to processes inB are per-
manently dead, and all the links fromq to processes
in B are eventually timely. Since no process inB
can communicate (their output links are permanently
dead in bothR andR′), processes inA cannot distin-
guish between runsR andR′. Thus, inR′ (as inR)
there is a time after which: (a) the leader ofq is notp,
and (b)q does not send messages top. Since the link
from q to p is the only input link ofp that is not per-
manently dead inR′, then there is a time after which
p does not receive any message inR′. So, by Fact 14,

13

in R′ there is a time after which the leader ofp is p.
Thus, inR′ correct processesp and q do not reach
agreement on a common leader—a contradiction.

Thus we proved our claim that in runR every pro-
cess inA sends messages forever to every process in
B. Since|A| = �n2 	 and|B| = �n2 �, this implies that

at least�n2 	 · �n2 � = � (n2−1)
4 	 links carry messages

forever in runR.

C Proof of Theorem 4

We now show correctness and communication effi-
ciency of the algorithm in Figure 2. Lets be an
eventually timely source. Since all the output links
of s are eventually timely there exists a value∆ and
a timeT0 after which every message sent bys takes
at most∆ time to be received and processed.

Lemma 15 For every process p, we always have p ∈
Contendersp.

Proof. Every processp initializes its set
Contendersp to {p}. Sincep does not set a timer
for itself, it never removes itself from this set. �

Definition 16 When a process p receives a message
(ACCUSATION, i) from q, we say the message is up-
to-date if i = php[p].

Note that ifp receives an ACCUSATION message
that is not up-to-date, it will ignore it.

Observation 17 For every processes p and q,
counterp[q] and php[q] are monotonically nonde-
creasing with time.

Proof. Clear from the waycounterp[q] andphp[q]
are updated. �

Lemma 18 For every process p and every correct
process q, either (1) there is a time after which
p �∈ Contendersq or (2) for every time t, there is
a time after which counterq[p] ≥ counter t

p[p] and
phq[p] ≥ pht

p[p]. Moreover, if p is faulty then (1)
holds.

Proof. If p = q, condition (2) holds because
counter p[p] and php[p] are monotonically nonde-
creasing. Now assumep �= q. If (1) does not

hold thenp is in Contendersq infinitely often so
q receives ALIVE messages fromp infinitely often.
Thus, at some timet′, q receives one ALIVE mes-
sage sent after timet. Sincecounterp[p] andphp[p]
are monotonically nondecreasing, thecounter and
ph values in that message are at least as great
as counter t

p[p] and pht
p[p], respectively. Thus

counter t′
q [p] ≥ counter t

p[p] andpht′
q [p] ≥ pht

p[p].
Condition (2) now follows sincecounterq[p] and
phq[p] are monotonically nondecreasing. Finally,
note that ifp is faulty then there is a time after which
q never receives an ALIVE message fromp. Soon af-
ter, q removesp from Contendersq and never adds
it back again. �

Lemma 19 counters[s] is bounded.

Proof. To obtain a contradiction, suppose that
counters[s] grows unboundedly. Thens receives in-
finitely many up-to-date ACCUSATIONS. Note that
an up-to-date ACCUSATION can only be received by
s if s is looping in lines 10–11: else,s has increased
phs[s] to a value greater than anything any process
has ever received. We can find a processp that in-
finitely often sends an up-to-date ACCUSATION to s
and incrementsTimeoutp[s]. SoTimeoutp[s] grows
to infinity. We now get to a contradiction by showing
that if Timeoutp[s] > η + ∆ at some timet > T0

thenp does not send an up-to-date ACCUSATION to
s at timet + η + ∆. Indeed, suppose it did, and let
x be the value ofphs[s] at timet + η + ∆. Then, (*)
p did not receive an ALIVE message froms during
times[t, t + η + ∆]. Moreover, (**)p must have re-
ceived(ALIVE , . . . , x) from s before timet+η+∆
(else it would not send an up-to-date ACCUSATION

at timet + η + ∆). By (*) and (**), p must have re-
ceived(ALIVE , . . . , x) from s before timet. There-
fore s sends such a message before timet—say at
a time t0. Thus, from timet0, s continues looping
in lines 10–11 until at least timet + η + ∆. There-
fore, s sends(ALIVE , . . . , x) during time[t, t + η].
Sinces is a timely source andt > T0, some ALIVE

message is received and processed byp during times
[t, t + η + ∆]—a contradiction. �

Definition 20 Let Lp be the largest value of
counterp[p] in the execution (or ∞ if counterp[p]
is unbounded). Let � to be the correct process with

14

the smallest Lp (break ties by process id) and let C
be its value of Lp.

Note that by Lemma 19,C <∞.

Lemma 21 There is a time after which leader� = �.

Proof. By Lemma 15, note that� will pick itself
as leader as long as it does not find another process
p �= � in Contenders� with smaller counter�[p].
So consider a processp �= �. By Lemma 18 and
definition of C, either there is a time after which
p �∈ Contenders � or counter �[p] becomes larger
thanC (breaking ties using process id). �

Corollary 22 There is a time after which ph�[�]
stops changing.

Proof. Indeed,ph�[�] can only change when� re-
linquishes leadership, which can only happen a finite
number of times by Lemma 21. �

Definition 23 Let �phase be the final value of
ph�[�].

Note that sinceph�[�] is monotonically nonde-
creasing,�phase is also the largest value ofph�[�].

Lemma 24 For every correct process p there is a
time after which � ∈ Contendersp.

Proof. By Lemma 21 and the definition ofC
and �phase , note that� sends(ALIVE , C, �phase)
infinitely often. Hence, since links are fair,p
receives(ALIVE , C, �phase) from � infinitely of-
ten. We claim thatp can only remove� from
Contendersp finitely often, which immediately im-
plies the lemma. We show the claim by contradic-
tion: if p removes� from Contendersp infinitely of-
ten, thenp sends(ACCUSATION, �phase) messages
to � infinitely often. Since links are fair,� receives
(ACCUSATION, �phase) infinitely often, and so it
eventually incrementscounter�[�] to a value greater
thanC—a contradiction. �

Lemma 25 There is a time after which for every cor-
rect process p, leaderp = �.

Proof. By Lemmas 18 and 24 and the fact that
counter �[�] eventually always equalsC, we con-
clude that there is a time after whichcounterp[�] =
C at every correct processp. By Lemma 24, there
is a time after which� ∈ Contendersp, so thatp
picks � as leader as long as there no other process
q �= � in Contendersp with smaller counterp[q].
Consider such a processq �= �. By Lemma 18 ei-
ther (1) there is a time after whichq �∈ Contendersp

or (2) counterp[q] becomes larger thanC (breaking
ties using process id). �

Lemma 26 There is a time after which only � sends
messages.

Proof. There are only two types of messages:
ALIVE and ACCUSATION. ALIVE messages are only
sent by a process if it thinks itself is the leader, so
by Lemma 25, (*) there is a time after which only
� sends ALIVE messages. We now claim that there
is a finite number of ACCUSATION messages sent.
Indeed, an ACCUSATION message is only sent to
p if timer(p) is started, which can only happen if
(ALIVE , . . .) is received fromp. Thus, because of
(*), there is a time after which the only ACCUSATION

messages sent are sent to�. When a processq
sends(ACCUSATION, . . .) to � it removes� from
Contendersq and so, by Lemma 24, this can only
happen finitely often. �

From Lemmas 25 and 26, Theorem 4 follows.

D Proof of Theorem 5

We now show correctness and communication effi-
ciency of the algorithm in Figure 3. Lets be an even-
tually timely source and leth be a fair hub. Since all
the output links ofs are eventually timely there exists
a value∆ and a timeT0 after which every message
sent bys takes at most∆ time to be received and
processed.

Lemma 27 For every process p, we always have p ∈
Contendersp.

Proof. Identical to the proof of Lemma 15. �

Definition 28 When a process p receives a message
(ACCUSATION, p, i) from q, we say the message is
up-to-date if i = php[p].

15

Observation 29 For every processes p and q,
counterp[q] and php[q] are monotonically nonde-
creasing with time.

Proof. Clear from the waycounterp[q] andphp[q]
are updated. �

Lemma 30 For every process p and every correct
process q, either (1) there is a time after which
p �∈ Contendersq or (2) for every time t, there is
a time after which counterq[p] ≥ counter t

p[p] and
phq[p] ≥ pht

p[p]. Moreover, if p is faulty then (1)
holds.

Proof. Identical to the proof of Lemma 18. �

Lemma 31 counter s[s] is bounded.

Proof. (Similar to the proof of Lemma 19) To ob-
tain a contradiction, suppose thatcounters[s] grows
unboundedly. Thens receives infinitely many up-to-
date(ACCUSATION, s, . . .) messages. Note that an
up-to-date ACCUSATION can only be received bys
if s is looping in lines 10–11: else,s has increased
phs[s] to a value greater than anything any process
has ever received. We can find a processp that in-
finitely often sends an up-to-date ACCUSATION to s
and incrementsTimeoutp[s]. SoTimeoutp[s] grows
to infinity. We now get to a contradiction by showing
that if Timeoutp[s] > η + ∆ at some timet > T0

thenp does not originate an up-to-date ACCUSATION

to s at timet + η + ∆. Indeed, suppose it did, and
let x be the value ofphs[s] at timet + η + ∆. Then
(1) p did not receive an ALIVE message during times
[t, t+ η +∆] and (2) ifp receives a CHECK message
during [t, t + η + ∆] then timer (s) is on at the re-
ceipt time. Moreover, (3) before timet + η + ∆, p
must either (a) have received(ALIVE , . . . , x) from
s or (b) have received(CHECK, s, x) while timer(s)
is off: indeed, if (3) did not hold thenp would not
send an up-to-date ACCUSATION at timet + η + ∆.
By (1), (2) and (3),p must have received before time
t either(ALIVE , . . . , x) from s or (CHECK, s, x). In
either case,s sends(ALIVE , . . . , x) at some time
t0 < t (a small induction argument shows that a pro-
cess can only send(CHECK, s, x) if s previously sent
(ALIVE , . . . , x)). From timet0, s continues looping
in lines 10–11 until at least timet + η + ∆. There-
fore, s sends(ALIVE , . . . , x) during time[t, t + η].

Sinces is a timely source andt > T0, some ALIVE

message is received and processed byp during times
[t, t + η + ∆]—a contradiction. �

Definition 32 Let Lp be the largest value of
counterp[p] in the execution (or ∞ if counterp[p]
is unbounded). Let � to be the correct process with
the smallest Lp (break ties by process id) and let C
be its value of Lp.

Note that by Lemma 31,C <∞.

Lemma 33 There is a time after which leader� = �.

Proof. Identical to the proof of Lemma 21. �

Corollary 34 There is a time after which ph�[�]
stops changing.

Proof. Identical to the proof of Corollary 22. �

Definition 35 Let �phase be the final value of
ph�[�].

Note that sinceph�[�] is monotonically nonde-
creasing,�phase is also the largest value ofph�[�].

Lemma 36 No process sends
(ACCUSATION, �, �phase) messages infinitely
often.

Proof. To obtain a contradiction, sup-
pose that some processp sends infinitely many
(ACCUSATION, �, �phase) messages. Of those, in-
finitely many get relayed throughh and reach�, since
h is a fair hub. Therefore� eventually increments
counter �[�] to a value greater thanC—a contradic-
tion. �

Lemma 37 There is a time after which leaderh = �
and phh[�] = �phase .

Proof. If h = � the result follows from Lemma 33
and the definition of�phase . Now assumeh �= �. By
Lemma 33 and the fact thath is a fair hub,h receives
an infinite number of ALIVE messages from�. It fol-
lows that (*) there is a time after whichphh[�] =
�phase . Moreover,� is added toContendersh in-
finitely often. By Lemma 30 and the definition of

16

� andC, there is a time after which for every pro-
cessq �= �, either (a)q �∈ Contendersh, or (b)
(counterh[q], q) > (C, �). Thereforeh chooses�
as leader infinitely often. We claim thath removes
� from Contendersh only finitely often, and so the
lemma follows. We show the claim by contradic-
tion. Suppose thath removes� from Contendersh

infinitely often. Then,h sends ACCUSATION mes-
sages to� infinitely often. By (*), infinitely many
such messages are(ACCUSATION, �, �phase). This
violates Lemma 36. �

Lemma 38 There is a time after which only � sends
ALIVE messages.

Proof. By contradiction, suppose some process
p �= � sends ALIVE messages forever. We first
claim that p �= h. Indeed, if p = h then there
are two cases:h = �—which contradictsp �= �—
andh �= �. In the latter case, we get a contradic-
tion by Lemma 37 and the fact thath can only send
(ALIVE , . . .) if h thinks itself as the leader. This
shows the claim thatp �= h. We now claim that (*)
p only receives finitely many ALIVE messages from
�. Indeed, from the definition of�, there is a time
after whichp can only consider itself as leader if�
is not in Contendersp. So, if p receives infinitely
many ALIVE messages from�, then infinitely many
of those have phase equal to�phase . So p adds�
to Contendersp infinitely often, and sop removes�
from Contendersp infinitely often, and sop sends
(ACCUSATION,�, �phase) to � infinitely often. This
violates Lemma 36—a contradiction that shows (*).
Now sincep sends ALIVE messages infinitely often,
h receives such messages infinitely often. By Lemma
37, there is a time after which� is the leader ofh.
After that time, each timeh receives ALIVE from
p, h sends(CHECK, �, . . .) to p. Sinceh is a fair
hub, p receives such messages infinitely often. An
infinite number of such messages contains a phase
equal to�phase (because there is a time after which
phh[�] = �phase by Lemma 37). Therefore (**)
there is a time after whichphp[�] = �phase . Fur-
thermore, the CHECK messages ensure thatp starts
a timer on� infinitely often. Then, because of (*),
p times out on� infinitely often and sends infinitely
many ACCUSATIONS to �. Infinitely many of those

have phase�phase due to (**). This violates Lemma
36—a contradiction. �

Lemma 39 There is a time after which for every cor-
rect process p, leaderp = �.

Proof. By Lemma 38, there is a time after which
for every correct processp, only p and � can be
in Contendersp (p is in its own Contendersp by
Lemma 27, butp needs to receive an ALIVE mes-
sage fromq �= p for q to be inContendersp). Hence
only p and� can be leaders atp. We now claim it is
impossible for leadership to switch betweenp and�
infinitely often. Indeed, by definition of�, there is a
time after whichp can choose itself as leader only if
� /∈ Contendersp. Hence if leadership switches be-
tweenp and� infinitely often then� is added to and
removed fromContendersp infinitely often, and so
(1) p eventually receives an ALIVE message from�
with phase�phase and so there is a time after which
php[�] = �phase , and (2)p sends an infinite num-
ber of ACCUSATIONSto �, and infinitely many have
phase equal to�phase . This violates Lemma 36—a
contradiction that shows the claim. Therefore there
is a time after which either� or p is always the leader
at p. But p cannot always be the leader atp elsep
sends ALIVE messages infinitely often, contradict-
ing Lemma 38. �

Lemma 40 There is a time after which only � sends
messages.

Proof. There are three types of messages: ALIVE ,
CHECK and ACCUSATION. By Lemma 38, (*) there
is a time after which only� sends ALIVE mes-
sages. By Lemma 39, this implies that (**) there
is a time after which no CHECK messages are sent:
indeed, such messages are only sent when a pro-
cessp receives an ALIVE message fromq and q
is not p’s leader. We now claim that there is a
finite number of ACCUSATIONS sent. Indeed, an
(ACCUSATION, p, . . .) message is sent either when
timer(p) expires, or when it is relayed in line 36.
The message can be relayed at most once per pro-
cess. Nowtimer(p) expires only if it is started, which
can happen only if an ALIVE message is received
from p or if a (CHECK, p, . . .) message is received.
Thus, because of (*) and (**), there is a time af-
ter which the only ACCUSATION messages sent are

17

(ACCUSATION, �, . . .). If this message is relayed
in line 36, then some process previously sent it in
line 28. When a processq sends it in line 28,q re-
moves� from Contendersq, which can only happen
finitely often by Lemma 39 (note thatq can only have
� as leader while� ∈ Contendersq). �

From Lemmas 39 and 40, Theorem 5 follows.

18

