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Abstract 1 Introduction

We StUdy the feaSIbIIIty and cost of implementinBackground, motivation and results
(0—a fundamental failure detector at the core of

many algorithms—in systems with weak reliabilitfrailure detectors are basic tools of fault-tolerant dis-
and synchrony assumptions. Intuitivelfy, allows tributed computing that can be used to solve funda-
processes to eventually elect a common leader. Wvental problems such as consensus, atomic broad-
first give an algorithm that implemengsin a weak cast, and group membership. For this reason there
system S where processes are synchronous, bb@s been growing interest in the implementation of
(a) any number of them may crash, and (b) only tfailure detectors [22, 18, 11, 18, 19, 20, 1, 6, 9, 2].
output links of an unknown correct process are evenA failure detector of particular interest 3 [4].
tually timely (all other links can be asynchronouRoughly speaking, witk every procesg has a local
and/or lossy). This is in contrast to previous impleariableleader), that contains the identity of a single
mentations of2 which assume that a quadratic nunprocess thap currently trusts to be operationgb (
ber of links are eventually timely, or systems thabnsiders this process to be its current leader). Ini-
are strong enough to implement the eventually p&ally, different processes may have different leaders,
fect failure detectoK>P. We next show that imple-but 2 guarantees that there is a time after which all
menting (2 in S is expensive: even if we want aprocesses have ttsame, non-faulty leader. Failure
implementation that tolerates just one process craddtector? is important for both theoretical and prac-
all correct processes (except possibly one) must séodl reasons: it has been shown to be the weakest
messages forever; moreover, a quadratic numbefailire detector with which one can solve consensus
links must carry messages forever. We then shpij, and it is the failure detector used by several con-
that with a small additional assumption—the exisensus algorithms, including some that are used in
tence of some unknown correct process whose agyactice (e.g., [16, 12, 21, 20, 13]).

chronous links are lossy but fair—we can imple- In this paper, we study the problem of implement-
ment(2 efficiently: we give an algorithm fof2 such ing Q2 in systems with weak reliability and synchrony
that eventually onlyne process (the elected leadegssumptions, and we are particularly interested in
sends messages. communication-efficient implementations.

Our starting point are systems where all links are
asynchronous and lossy: messages can suffer arbi-
Student paper: No trary delays or even be lost. In addition, processes
may crash, but we assume that they are synchronous:
their speed is bounded and they have local clocks that
can measure real-time intervals. We denote such a
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cess whoseutput links are eventually timely (intu-be able to notice this failure and chose a new leader);
itively, this means that there is an unknown boutdit from now on no other process needs to be mon-
0 and a time after which every message sent frotored. Thus, after processes agree on a common
that process is received withintime). We call such leader, no process other than the leader should have
a processan eventually timely source, or simply a to send messages. This leads us to the following
source, and we denote by a systemS~ with at definition and a related question. An algorithm for
least one source. Note that processesaloknow §2 is communication-efficient if there is a time after
the identity of the source(s) ifi, the time after which which only one process sends messages. Is there a
their output links become timely, or the correspondemmunication-efficient algorithm foR in system
ing message delay bound(s). Moreover, except K#
the output links of the source(s), all the other links in To answer this question we investigate the com-
S may be asynchronous and/or lossy. munication complexity of implementations ©f in

S is a very weak system because processes raggtemsS, and we derive two types of lower bounds:
be unable to communicate with each otherSlanly one on the number of processes that must send mes-
messages seby the unknown source(s) are guarasages forever, and one on the number of links that
teed to be received. All other messages, includingmllist carry messages forever. Specifically, we show
those sento the source(s), can be lost. Thus, prthat for any algorithm forQ2 in S: (a) in every
cesses cannot use sources as “forwarding nodestuto all correct processes, except possibly one, must
communicate reliably with each other. send messages forever; and (b) in some run at least

Can one implemenf in systemS? Note that) (n?—1)/4 links must carry messages forever, where
requires that processes eventuatyee on a com- n is the number of processes i These lower
mon leader, and it is not obvious how to achieve ttigunds hold even if we assume that at most one
agreement in a system where processes may bepiacess may crash. We conclude that there is no
able to communicate with each other. For exampt®mmunication-efficient algorithm fof in .S that
consider a systerfi wherep andq cannot communi- can tolerate one crash.
cate (say, all the messages they send are lost). SufVe next consider how to strength8rso that com-
pose there are three other processesss and s, munication efficiency can be achieved. Specifically,
such thats; and s, behave timely towardg, ands,  since our impossibility result relies on the lack of re-
and s3 behave timely towardg, but the messagediable communication ir6, we consider the follow-
from s; to ¢, and those fromss to p, are often lost ing additional assumption: there is at leagt un-
or greatly delayed. Fop, the natural leader candiknown correct process such that the links to and from
dates are;, andss,; while for g the candidates are that process arfair. A fair link may lose messages,
andss. Any implementation of2 must ensure thatbut it satisfies the following property: messages can
p andq eventually agree on the same leader—a ndie partitioned into types, and if messages of some
trivial task here since and g cannot communicatetype are sent infinitely often, then messages of that
with each other (or with any other process). type are also received infinitely often. A correct pro-

Our first result is an algorithm that implemerits cess whose input and output links are fair is said to
in systemS. So processes are indeed able to agkeeafair hub, or simply ahub. We denote byS* a
on a common leader despite permanent communiggstemsS with at least one hub (whose identity is not
tion failures and any number of crashes. This &nhown)?
gorithm for 2, however, has a serious drawback: it S* is a weak system because it does not ensure
forces all the processes to periodically send megsairwisetimely communication. In fact, irb™ only
sages forever. This is undesirable, and perhapséssages sefromthe source(s) are guaranteed to be
can be avoided. Intuitively, after a process becoma&ntually timely. All other messages, including all
the common leadérjt must periodically send mesthose sento the source(s), can be arbitrarily delayed.
sages forever (because if it crashes, processes rhbgs, processes cannot use sources as intermediate

!Note that processes may never know whether this has al-2So S+ is a systemS~ with at least one eventually timely
ready occurred. sourceand at least one fair hub, whose identities are not known.



| System || Properties cept possibly one) must send messages forever;

S~ Links: asynchronous and lossy moreover, a quadratic number of links must
Processes. synchronous and subject to crashes carry messages forever. This holds even if we
S~ with at least oneventually timely source want an implementation that tolerates just one
S (i.e., a correct process whosatput links

are eventually timely) process crash.

S with at least ondair hub

4. We then show that with a small additional

St (i.e., a correct process whosgut and output . .
links may be lossy but are fair) assumption—the existence of some unknown
correct process whose asynchronous links are
Table 1: Systems considered in this paper. lossy but fair—we can implemei efficiently,

i.e, such that eventually only one process (the

Communication- elected leader) sends messages
system || © algorithm efficient ges.
Q algorithm ]
T No No As a final remark, we note that tlegentually per-
S Yes No fect failure detector ©P3 cannot be implemented in
ST Yes Yes systemS. So S is an example of a system that is

strong enough to implemefit but too weak to im-
plement>P. This, together with our results on the
cost of implementing? in S and S*, partially an-
nodes to communicate with each other in a timesyvers some questions posed by Keidar and Rajsbaum
way. in their 2002 PODC tutorial [15].

Our next result is @ommunication-efficient algo-

rithm for 2 in ST We derive this algorithm in two Related wor k

stages: we first give a simpler algorithm for a sys-

tem S whereall the links are fair (rather than just th&elated work concerns these of € to solve agree-
links of an unknown hub). We then modify this alggnent problems (e.g., consensus and atomic broad-
rithm so that it works ir5™. Both algorithms toleratecast), and themplementation of €2 in various types
any number of crash failures (in addition to messagePartially synchronous systems [10].

losses in lossy links). Tables 1 and 2 summarize ouf? is the weakest failure detector that can be used
results on the implementability (and communicatid@ solve consensus and atomic broadcast in systems
efficiency) of(). with a majority of correct processes [5, 4], and it

In summary, our contributions are the following:is the failure detector required by several algorithms

[16, 17,12, 21, 20, 3, 13].

1. We study the feasibility and cost of imple- A simple implementation of2 consists of imple-
menting —a fundamental failure detector ahenting®7P first and outputting the smallest process
the core of many algorithms—in systems witurrently not suspected by P [16, 8, 15]. But this
weak reliability and synchrony assumptions. approach has serious drawbacks. In particular, it re-
quires a system that is strong enough to implement

. - OP (a failure detector that is strictly stronger than
in a weak system where only the output lin ) )
, and it requiresall processes to send messages
of some unknown correct process are even u) . ;
orever (just to implemendP).

ally timely (all other links can be asynchronous .
L . .~ Several papers have focused on reducing the com-
and/or lossy) . Thisisin contrast to previousim- = ="~ . : .
. . . ... munication overhead of failure detector implementa-
plementations of) which require systems with

tions. The algorithm in [18] implements failure de-

a quadratic number of eventually tim_ely Iink% tor©S* in a way that onlyn links carry messages
or systems that are strong enough to |mplemen(f

OP. 3Informally, &P ensures two properties: (a) any process that

. . . . crashes is eventually suspected by every correct process, and (b)

3. We show that implementing in this weak there is a time after which correct processes are never suspected.
system is expensive: all correct processes (ex-Informally, ©S ensures two properties: (a) any process that

Table 2: Implementability of?.

2. We give the first algorithm that impleme
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forever. But this algorithm requires very strong sy | nformal model
tem properties, namely, that no message is ever lost,
and all links are eventually timely in both directiondVe consider distributed systems with > 2 pro-

[19] has an algorithm fof2, but the paper assumesessed]l = {0,... ,n — 1} that can communicate
some strong system properties: all links are eventdth each other by sending messages through a set
ally reliable and timely. of unidirectional linksA. We now describe the be-

Another communication-efficient implementatiof@vior of processes and links in more detail.
of Q was given in [1]. In that implementation, only Processes. Processes execute by taking steps. In

the links to and from some (unknown) correct pr@_step a process can either receive a set of messages

cess need to be eventually timely, all other links c@Rd then change its S;thtef, it can send a message
be asynchronous and lossy. This system assump@8f then change its statdhe value of a variable of

is weaker than the ones in [18, 19]. But it is strongBrProcess at timeis the value of that variable after
than the one we assume here ff: indeed it is the Process takes a step at timeThere is a lower

strong enough to allow the implementation and upper bound on the rate of execution (number of

(which cannot be implemented &1"). steps per time unit) of any non-faulty process. Pro-
cesses have clocks that are not necessarily synchro-

Another related result is the algorithm that tranSi,ed. but we assume that they can accurately mea-
forms ©S to Q given in [7]. Note that one way ©syre intervals of time (it is easy to extend our results
implement(2 is to first implement>S, and then us

hi ¢ ) lworithm. But thi h ®to clocks with bounded drift rates).
this transformation algorithm. But this approach can- , process can fail by permanently crashing, in

not be used_ to imple_mem_ in SVSte”?S: In fact, the which case it stops taking steps. We say {tratess
transformation algorithm in [7] requires all Processes. e at timet if it has not crashed by time We
to reliably communicate with each other (which m Ay a process isorrect if it is always alive. We say a

not be possible i). Moreover, one must 'mplemerg)rocess igaulty if it is not correct. Unless we explic-

oS5 irst, ar_1d Itt IS n(#. c_Ieaf[r hIOW .ttT:S Ci;f bi d?nef Pfy state otherwise, we consider systems whame
a communication-efficient algorithm ifi*, short of " processes may crash,

using our algorithm, which already implemests Links. We assume that the network is fully con-

nected, i.e.A = II x II. The unidirectional link
from proces® to procesg is denoted by — ¢. We
consider various types of links, all of which satisfy

Roadmap the following property:

We first give an informal model of systents, S
and ST (Section 2). We then consider the problem
of implementing(? in S: we first give an algorithm
for  in S (Section 3), and then derive lower bounds
on the communication complexity of this problem
(Section 4). We next strengthen systefnto de-
rive communication-efficient algorithms fd2: the
first algorithm assumes that all links are fair (Sec-
tion 5.1), the second one assumes that the links of
some unknown correct process are fair, i.e., it works
in systemS™ (Section 5.2). A brief discussion con-
cludes the paper. Because of space limitations, all

proofs have been moved to an optional appendiX.  5our lower bounds also hold in a stronger model in which a
process can receive, change stai® send in a single atomic
step.

crashes is eventually suspected by every correct process, and (fWe assume that messages are unique, e.g., each message
there is a time after which some correct process is never sesatains the id of the sender and a sequence number (this is im-
pected. plicit in all our algorithms).

e [Integrity]: Processqg receives a message
from procesg at most once, and only {f pre-
viously sentm to ¢.°

A link p — ¢ is eventually timely if it satisfies
Integrity and the following property:

[Eventual timeliness]: There exists & and a
timet such that ifp sendsn to g atatimet’ > ¢

andq is correct, thery receivesm from p by
timet' + 6.




The maximum message deldyassociated with an2.1 Failure detector 2

eventually timely link is not known. I . L .
y y The formal definition of failure detectdt is given in

A link that intermittently loses messages may ST‘B‘, 4]. Informally, 2 outputs, at each processa sin-

isfy afairness property. To define this property, Weyie process denoteldader,, such that the following
assume that messages carry@e in addition 10 its property holds:

data. Fairness requires that if a process sends an in-
then the link delivers an infinite number of messages \yhich, for every alive process leader,, = (.
of that type. More precisely, we assume that mes-

sages consists of pairs = (type, data) € ¥* x *  |f at time ¢, leader, contains the same correct pro-
whereX = {0,1}. Alink p — g isfair if it satisfies cess for all alive processep, then we say that is
Integrity and the following property: the leader at time ¢.  Note that at any given time
processes do not know if there is a leader; they only
know that eventually a leader emerges and remains.
e [Fairness|: For everytype, if p sends infinitely
many messages of typgpe to ¢ andq is cor- 22  communication efficiency

rect, theng receives infinitely many messages
of type type from p. We are interested in failure detector algorithms that

minimize the usage of communication links. Note
that in any reasonable implementation of a failure de-

We classify correct processes based on the pr tor, some process needs to send messages forever.
erties of their links. Aneventually timely source HOWEVer, not every process needs to do that. We
(or simply source) is a correct process whosetput S2Y that an implementation of failure detecforis
links are all eventually timely. (Only theutgoing communication-efficient if there is a time after which
links need to be timely, hence the word “source”.) Ay One process sends messages.
fair hub (or simply hub) is a correct process whose

input and output links are all fair. 3 Implementing Oin system S
Systems. We consider three systemS;, S, and

ST that differ on the properties of their links (theiWe now give an algorithm that implements in
process properties are those described at the be§inThis algorithm ensures that processes eventually
ning of this section). In all three systems all linkagree on a common leader, even though most pairs of
satisfy the Integrity property. SystefiT has no fur- processes may be unable to communicate with each
ther requirements; in particular, all links can be asyother (recall that inS all links can be asynchronous
chronous and/or lossy. In systeth we assume thatand lossy, except for theutput links of some un-
there is at least one eventually timely source (whds®wn correct process).

identity is unknown). Except for the output links of The basic idea is that each process selects its
the source(s), all other links can be asynchrondeader among the processes that seem to be currently
and/or lossy, and so most pairs of processes nadiye. But since almost all links if may suffer from

be unable to communicate ifi. SystemS* is a arbitrary delays and/or losses, there are several prob-
strengthening of systerfi that allows communica-lems that must be overcome. In particular: (a) dif-
tion between all pairs of processes through some tarent processes may have different views of which
known hub. More preciselys™ is a system with at processes are currently alive, and the different views
least one eventually timely souremd at least one may never converge, (b) some processes may re-
fair hub (their identities are not known). Note that ipeatedly alternate between appearing to be alive and
ST most pairs of processes may not be able comndead, and continue to do so forever. Such problems
nicate in a timely fashion: even though they are faigmplicate the task of selecting a common and per-
the links of the unknown hub(s) can still be asymanent leader. For example, procgssinnot simply
chronous and/or lossy. select as its leader the “smallest” process that seem



to be currently alive: problem (a) may cause differ-
ent processes to have different leaders (forever), and
problem (b) may causeto change its leader forever.

To overcome these and other similar difficulties,
processes maintain “accusation” counters, and thelode for each process
indirectly use the unknown source(s) to help them
converge on the same correct process as the Ieé{%{?ﬁedureupdateLeader()

The algorithm, described in full in Figure 1 roughl§/ eader — E.SUCh thatcounter(¢], ¢) =
! o min{(counter(q], q) : ¢ € set2}
works as follows. Each procegsmaintains a set
set2 of processes that it considers to be currenflf) initialization:
alive: these are’s current candidates for leaderz 74 7 P : TImeoutlig] — 7 +1

. . . 3 Vg #p:Timeout2[g] — n+1
ship. To select among the different candidateslso )

L .. 4 Yq#p:resettimerl(q) to Timeoutl[g]
maintains acgunter[q] for each process, which IS g % p : resettimer2(q) to Timeout2[q]
p's rough estimate of how many times was previ- ¢ v, . counter[q] « 0
ously suspected of being dead. Proceselects as; set1 — {p};set2 — {p}
its leader the procedsin its set2 that has the small-s start tasks1 and 2
est(counter[l],£) tuple. (The leader is recomputed ;.
whenever the setet2 or the counters are updated). loop for ever

To help each process maintain itset2 1, send(ALIVE,p, counter[p]) to every process except
and counter variables, every procesg sends p everyn time
(ALIVE, q, counter[q]) messages periodically, sa
everyn time, to all other processes (note that mos_thrupo'n receive(ALIVE, ¢, ¢) from ¢’ do
all of these messages may be lost or delayed arbitar- jt , — 4/ then
ily). If a processp receives(ALIVE, g, counter[q]) 13 resettimer1(q) to Timeoutd[]
directly from ¢, p relays the messagmce to every 14 setl « setlu {q}
other process, and it also resets a local timer, denated send(ALIVE, g, ¢) to every process exceptandg
timer1 (q), to expire afterTimeout1 [¢] time unitd, 1  resetiimer2(q) to Timeout2[q]
which is the maximum delay that expects until 17 set2 « set2 U {q}

p receives the nextALIVE, q, counter|q]) directly 18 counter|q] < max{counter|q],c}
from ¢.8 If timerl(q) expires before receivingte updateleader()

this message directly frony, then p sends an, upon expiration oftimeri(g) do
ACCUSATION message t@. Whenq receives an.:  send ACCUSATIONtO ¢
ACCUSATION message, itincrements itsunter[q]. 22 setl — setl — {q}

If p receiveg ALIVE, q, counter[q]) eitherdirectly 22 Timeoutllg] — Timeoutl[q] + 1
from ¢ or relayed by another process, thenadds 2 esetimeri(q) to Timeout[g]
q to its setset2, it updates itscounter(g] vari- s upon expiration oftimer2(q) do
able accordingly, and it also resets a timer, de- set2 «— set2 — {q}
notedtimer2(q), for when it expects to receive ther  Timeout2[q] — Timeout2[q] + 1
next (ALIVE, ¢, counter|q]) (directly or relayed). If 22  resetimer2(q) to Timeout2[q]
timer2(q) expires before receiving this messag®, updateLeader()
thenp removes; from set2. 30 UpON receive ACCUSATION do
a1 counter[p] « counter[p] + 1

"Note thattimeri (¢) is set to a time interval rather than an
absolute time. The timer is decremented until it expires.

8In the algorithm’s code, shown in Figurezalso adds; to Figure 1: Implementation d® for systemsS.
a set denotedet1, but this set is only used to facilitate the proof
of correctness.

®Sincep does not know the maximum message delays asso-

ciated with eventually timely links, every time a timer expiges
increments the associated timeout.




Theorem 1 ThealgorithminFigure limplements2 to and from some unknown correct process are fair,
insystem S. i.e., it works in systent™.

4 Impossibility of communication- 5.1 Efficient implementation in a system S
efficient 2 in system S where all links are fair

V}/e now seek a communication-efficient algorithm
oraina systemS (i.e., a system with an eventu-
ally timely source) with the extra assumption that all
inks are fair. One simple attempt to get communica-
16n efficiency is as follows. Each process: (a) sends
LIVE message®nly if it thinks it is the leader,
) maintains a set of processes, cal@ahtenders,
om which it received an AIVE message recently
I?én adaptive timeout mechanism is used to determine
if a message is “recent”), and (c) chooses as leader
the process with smallest id in its current set of con-
tendersl® Such a simple algorithm would work in a
system wherall correct processes are sources. But
in our system, it would fail: if theonly source hap-
pens to be a process with a large id, the leadership
1. Ineveryrun, all correct processes, except pos- could forever oscillate between the smaller correct
sibly one, send messages forever. processes.
) One way to fix this problem is to estimate for each
2. In somerun, at least [(” 4_1)} links carry mes- process the number of times it was previously ac-
sages forever. cused of being slow. These accusation counters—
rather than the process ids—are then used to se-
From Theorem 2(1), we immediately get the folect the leader among the current set of contenders.
lowing: More precisely, each process keeps a counter on the
number of times it was accused of being slow, and
includes this counter in the IAVE messages that
it sends. Every process keeps the most up-to-date
counter that it received from every other process,
and picks as its leader the process with the smallest
counter among the current set of contenders (using
5 Communication-efficient imple- Process id to break ties). If a process times out on a
. £ O current contender, it sends an “accusation” message
mentations o to this contender, which causes the contender to in-
We now seek algorithms fd that require only Onecrement its own accusation C(_)unter. The hope is that
Ehe counter of eactourceremains bounded (because

process to send messages forever (this also |mpa{ ?ts links are eventually timely), and so the source

that the number of links that carry messages foreve{ .
o . ~with the smallest counter is eventually selected as the
is linear rather than quadratic). In order to achle}/ee

this, Theorem 2 implies that we must strengthenaoler by all.
the system modeb. In this section, we first give
a communication-efficient algorithm fdp that as-

_sumes thaal! links in S are fair (nOt_e thajt this SYStem 19A process always considers itself to be a contender, so if it
is stronger thar§™). We next modify this algorithm goes not have recentisve messages from any other process,

so that it works in a systerf where only the links the process picks itself as leader.

We now consider the communication complexity
implementations of) in systemS. Specifically we
give two types of lower bounds: one is on them-
ber of processes that send messages forever, and t
other is on thenumber of links that carry message
forever. A corollary of these lower bounds is th
there is no communication-efficient implementatic%r
of 2 in systemS. The bounds that we derive here a
ply even if we assume that most one process may

crash.

Theorem 2 Consider any algorithm for 2 in a sys-
tem S with n processes where at most one process
may crash.

Corollary 3 Thereisno communication-efficient al-
gorithm for € in a system S with n > 3 processes,
even if we assume that at most one process may
crash.

This algorithm, however, does not work, because
the accusation counter of a source may keep increas-
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ing forever! To see this, note that a source may stop
contending for leadership voluntarily, when it selects
another process as its leader (a non-source contender
with a smaller counter). When it does so, the source
stops sending AVE messages (for communication
efficiency). Unfortunately, this triggers processesto
timeout on the source and send@USATION mes- o Ce%i?;%:oz:fetgg;‘??s
T e o st 1.1
) . i min{(counter[q], ¢q) : ¢ € Contenders}
also increase (due to some legitimate accusations),
and then the source may retake the leadership. In fiidnitialization:
way, the leadership may oscillate between the soutce’ 7 P Timeoutlq] « 7+ 1
and some non-sources forever. 3 Vg p:timer(q) — off
i . . 4 Vq:phlg] <=0
_To fix this prqblem, the source s_hould increment v, . counter[q] — 0
its own accusation counter only if it receives a “l§- contenders — {p}
gitimate” accusation, i.e., one that was caused by |eader — p
the delay or loss of one of itsIAVE message (ands start tasks1 and 2
not by the fact that the source voluntarily stopp?éjsk 1:
sending them). To determine whether an accuga-|oq, forever
tion is legitimate, each procegskeeps track of the,,  whileleader = p do
number of times it hasoluntarily given up contend-; send(ALIVE, counter[p], ph[p]) to every
ing for the leadership in the past—this is its current process excepteveryn time
phase number—and it includes this number in eacke  ph[p] < phlp] + 1
ALIVE message that it sends. If any processnes 1 Whileleader # p donop
out onp and wants to accusg, it must now in- task 2:
clude its own view ofp's current phase number in. upon receive(ALIVE, d, i) from ¢ do
the AccusaATION that it sends t; p considers thisis  Contenders < ContendersU {q}
accusation to be legitimate only if the phase num-  counter|q] < max{counter[q], d}
ber that it contains matches its own. Furthermore, Phlg] < max{phlq], i}
wheneven gives up the leadership voluntarily, it in®  resetimer(q) to Timeout[g]
crements its own phase number: this caysesig- *°  Updateleader()
nore all the spurious accusations that result fromats upon expiration oftimer(¢) do
silence. 21 Contenders — Contenders — {q}

The 2 algorithm that embodies the above ideas®s SENA(ACCUSATION, phig]) tog
shown in Figure 2. 23 Timeout[q] <+ Timeout[q] 4 1
24 updateLeader()

. N . 25 upon receive(ACCUSATION, i) do
Theorem 4 The algorithm in Figure 2 implements 2 ifi= phip| then

Nina system S \{vhere all links are fair, and it is counter[p] « counter[p] + 1
communication-efficient. updatel_eader ()

5.2 Efficient implementation in system S*  Figure 2: Communication-efficient implementation

. L . of  for a systemS where all links are fair.
We now describe a communication-efficient algo-

rithm for Q2 for a systemS where only the links to
and from some unknown correct process are fair, i.e.,
it works in system5™. In this system the previous al-
gorithm (Figure 2) does not work because some links
can now experience arbitrary message losses.



The most obvious problem, and also the easiship ofp by sending an ACUSATIONS top if p does
one to solve, is that the @CUSATION messages sennot appear to be timely. This scheme prevents the
by a proces® to another procesg may never reachproblematic scenario mentioned above, and it can be
q: the link p — ¢ may be dead. The obvious sashown to work while preserving communication ef-
lution is for p to send each BcusATION of ¢ to all ficiency: after the common leader is elected, all the
processes (including the unknown fair hub); any prativVE messages come from that leader, and so there
cess that receives such a message relays it oncaréono more @ECK messages.

g. This scheme preserves communication efficiencyAll these ideas are incorporated in the algorithm of
after the permanent leader emerges, there are no Re@yure 3. Note that ACUSATION and CHECK mes-
accusations, and so the relaying stops. sages have an extra field containing the originator of

A more subtle problem, and a tougher one to solVB& Message (as opposed to the relayer).
is that two leader contendegsand ¢ may partition
the processes in two self, and 11, such that pro- Theorem 5 Thealgorithmin Figure 3 implements ()
cesses iil, (includingp) and those i, (including insystem S*, and it is communication-efficient.
q) havep and ¢ as their permanent leader, respec-
tively. This can occur as follows: (a) the sourge
and the fair hubh are inIl,, and they are distinct
from p, (b) processes ifl, receive timely AIVE
messages from, but they never hear from (c) pro-
cesses inl, receive timely AIVE messages from,

6 Final remarks

In their 2002 PODC tutorial [15], Keidar and Rajs-
baum propose several open problems related to the
implementation of failure detectors in partially syn-

but, except forh, they never hear from, and (d)h chronous systems. In particular, they ask what is the
receives timely AIVE messages from bothandg, 7 ' ' !
ves Imey g th © «yeakest timing model whereS and/or() are im-

but chose as its permanent leader. In this scenari(%\,' . ; )
nobody ever sends @CUSATION messages tp or b (_ementat_)le bubP is not’. AS a p?““a' answer to
4. Moreover,p and ¢ never hear from each other{h's guestion, we note th&tP is not implementable

So bothp andq keep thinking of themselves as thi _systemS. In f_act, in the full paper we s_how th"’.‘t
leader, forever. this holds even if we strengthehby assuming that:

_ ) (&) all the links inS are reliable (i.e., no message

One attempt to solve this problem is to relay 3 ever lost), and (b) processes know the identity of
the ALIVE messages (like the GCUSATION mes- the source(s) irf. So S is an example of a system
sages) so that the contenders for leadership, spft}is strong enough to implemeftbut too weak to
asp andgq in the above scenario, can all hear froﬂ%plementop. Similarly, S* is strong enough for
each other. Although this solution works, it is Ngf efficient implementation of2, but still too weak
communication-efficient because it force8 pro- for implementingo . Intuitively, this is because the
cesses to send messages forever: the elected legdg[ of synchrony i andS™ is not sufficient to get
does not stop sending LWVE messages, and eachp: in poth systems only theutput links of some
ALIVE is relayed by all. correct process(es) are eventually timely. Note that if

To prevent partitioning while preserving comwe strengthen the synchrony Sfby assuming that
munication efficiency, we use the following idedwoth the input and output links of some correct pro-
roughly speaking, if a processhasp as its current cess are eventually timely, th&rP becomes imple-
leader, but receives anlAVE message from a proimentable [1].
cessg # p, thenr sends a “GECK” message telling In [15] Keidar and Rajsbaum also ask: “Is build-
q about the existence gf (and some other relevaning &P more costly than®S or 2?”. Concerning
information aboup). CHECK messages can be losthis question, note that any implementation<&P
but if: (@) r is the fair hubh, (b) ¢ keeps sending(even in a perfectly synchronous system) requires
ALIVE messages ta, and (c)h continues to pre-all alive processes to send messages forever, while
fer p as its leader, theg will eventually receive a2 can be implemented such that eventually only the
CHECK message fromk and find out about its “ri- leader sends messages (even in a weak system such
val” p. If this happensg “challenges” the leader-asS™).
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Code for each procegs
procedur e updateLeader ()
1 leader — ¢ such thafcounter[¢], ¢) =

min{(counter[g], q) : ¢ € Contenders}

on initialization:

Vg # p: Timeout[g] — n+ 1
Vq # p : timer(q) « off

Vg : phlg] < 0

Vg : counter[g] < 0
Contenders «— {p}

leader — p

start tasks 1 and 2

task 1:

9 loop forever

10 whileleader = p do

1 send(ALIVE, counter[p], phip]) to every
process excepteveryn time

12 ph[p] < phlp] + 1

13 whileleader # p do nop

task 2:

14 upon receive(ALIVE, d, i) from ¢ do

15 Contenders — ContendersU {q}

16 counter[q] < max{counter|q], d}

7 phlg] — max{ph[q], i}

18 resettimer(q) to Timeout|q]

19 updateLeader()

20 if ¢ # leader then

2 send(CHECK, leader, ph[leader]) to ¢

0 N o o &~ W N

22 upon receive(CHECK, ¢, i) do
23 if timer(q) is off then

24 phlq] — max{phlg], i}

25 resettimer(¢) to Timeout|q]

26 upon expiration oftimer(¢) do

27 Contenders < Contenders — {q}

28 send(ACCUSATION, ¢, ph[g]) to every
process except

20 Timeout[q] < Timeout[q] + 1

30 updatel eader()

a1 upon receive(ACCUSATION, ¢, i) do
32 if ¢ = pthen

33 if ¢ = ph[p] then
34 counter[p] « counter[p] + 1
35 updateleader ()

36 else send(ACCUSATION, ¢, i) t0 ¢

Finally, it is also worth pointing out that the above
results provide an alternative proof tRaP is strictly
stronger than>S[14]: this can be deduced from the
fact that() (and hencedS) is implementable in sys-
tem.S but &P is not.
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Optional appendices s sends an ACUSATION message te, and sos
sends ALCUSATION messages tp infinitely often.
A  Proof of Theorem 1 (B) There is a time after whicp is never inset .
In this case, there is a time after whiemever re-
We now show correctness of the algorithm in Figeives(ALIVE, p, x) messages directly from Thus
ure 1. Lets be an eventually timely source ifi. timer!(p) expires infinitely often ats, and sos
Since all the output links of are eventually timely sends ACUSATION messages tp infinitely often.
(and the rate of process execution is bounded) th8neces is a source, the link from to p is eventu-
is a constant\ and a time after which every messagaly timely. Thus, in both cases (A) and (B),re-
sent bys takes at mostA time to be received andceives ACCUSATION messages from infinitely of-

processed. ten, andp incrementscounter, [p| infinitely often, so
counter,[p| is not bounded. O

Lemma 6 For every process p, we always have p €

setl, and p € set2),. Lemma 9 For every correct process p, if there exists

atime after which p € set1, thenthere existsatime

Proof. Every proces® initializes |t§ setSsetJI_, and after which for every correct process ¢, p € set2,.
set2,, to {p}. Sincep does not set timers for itself, it

never removes itself from these sets. O Proof. Letp be a correct process. #f = s, then,
by Lemma 7, eventually € set2, for every correct
Lemma7 For every correct process ¢, there is @ processy. Now assume # s. Suppose that there
time after which s € setlq and s € set2,. Fur- exists a time after which € set1. Thus, there is a
thermore, counters[s] is bounded. time after whichtimer1 (p) at s never expires. This
implies there is some time intervéaland a time af-
Now consider any correct procegs# s. Process ter WhiCh.S periodically receivesALIVE, p, .*) mes-
sages, directly fromp, at least once everytime. So

s sends anALIVE, s, x) to g everyn time. Since . : .
. A o ) 1o g ynim . there is a time after which € set2;. Moreover, ev-
s is an eventually timely source, there is a time a

ter which every(ALIVE, s, %) thats sends is directly ey tlm?s receives dALIVE, p, x) message directly
. . . L . from p, it sends(ALIVE, p, x) to all processeg ex-

received byg, and it is received withim + A time t fors and». Therefore. eventually ever ,
from the timeq received the previougALIVE, s, ) cept fors andp. eretore, eventually every co

. . L ) rect procesg such thaty # p andgq # s receives
from s. Sinceg increases its timer8meout1 (s) and ALIVE from s at least once evers -+ A tim
timeout?2(s) every time they expire, there is a tim P *). om s atleast once e ey + ©

: . . 0, there exists a time after which for every correct
after which they will cease expiring. Thenceforth, h th 2 For th
s € setl, ands € set2,, and g ceases to sendP'0cessy such thaly 7 p, p € sef2,. For the case

ACCUSATION messages te. Since eventually all ¢ = P> Note that by Lemma & < set2, (always)

correct processes stop sendinG@USATION mes- and this concludes the proof. -

sages t, counter,[s] is bounded. O Henceforthpar}, denotes the value of the local vari-
ablevar of p at timet.

Lemma8 For every correct process p, if

countery[p] is bounded then there exists a time Lemma 10 For every process p and every correct

after which p € setis. process g, either there is a time after which p ¢

_ set2, or for every time ¢, there is a time after which
Proof. By Lemma 6, the lemma obviously holds, ... [p] > countert [p]
q = puls

for the case thap = s. Now consider a correct
processp # s. We prove the contrapositive oProof. Forp = ¢, the lemma is trivial. Now
the lemma. Suppose that ¢ set!, infinitely of- assumep # ¢ and suppose thagt < set2, in-
ten. There are two possible cases. (A) Progesinitely often. Thusg must receive messages of type
is added to and removed fromet!, infinitely of- (ALIVE, p, counter[p]) infinitely often. Lett be any
ten. In this case, every timeremoves from set1,, time. There must be a timé > ¢ whengq receives

Proof. By Lemma 6,s € setl; ands € set2;.
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(ALIVE, p, c) originally sent byp after timet, soc > Proof. Let B be the set of correct processesuch
counter’[p]. Then at timel/, ¢ sets itscountery[p] that counter,[p] is bounded. By Lemma % € B,
to ¢, and so we havetrountery[p] > counter;[p]. thus B is not empty. By Lemma 11(1), for every
The lemma now follows sinceounter,[p] is mono- processp € B, there is a corresponding integer

tonically nondecreasing. O and a time after which for every correct process
p € set2, and countery[p] = v, (forever). Let¢ de-
Lemma 11 For every correct process p: note the processin B with the smallest correspond-

) _ ing tuple (v, p). We now show that eventually every

1. If counterp[p] is bounded, then there exists & correct process selectd as its leader (forever).

value v, and atime after which for every correct  Nte that correct processselects its leader from

process ¢, p € set2, and counter[p] = vp. the setset2, (by Lemma 6, this set is never empty).
Since there is a time after whichc set2,, even-
tually ¢ is a permanent candidate for leadership at
q. We now show that for any other procegss# ¢:
(*) there is a time after which either ¢ set2, or
(countery[p],p) > (countery[l],¢). This implies
Proof. Letp be a correct process. that eventuallyy select< as its leader, forever.
(1) Supposecountery[p] is bounded. Then, by To show (*) holds, consider the following 3 pos-
Lemma 8, there exists a time after whighke set1,. sible cases. Ip is not correct then, by Lemma 12,
Therefore, by Lemma 9, there exists a time afteventuallyp ¢ set2, (forever). Now suppose that
which for every correct procesg p € set2,. Thus, p is correct. If counter,[p] is bounded, them is
by Lemma 10, for all correct processes for all in B; so, by our selection of in B, eventually
t there exists a time after whichounter,[p] > (countery[p] = vy, p) > (countery[f] = vy, £) for-
counterl[p].  Since counter,[p] is bounded andever. Finally, if counter,[p] is not bounded, then,
monotonically nondecreasing, there exists a vajueby Lemma 11(2), there is a time after whigh ¢
and a time after whiclounter,[p] = v,. Moreover, set2,, or countery[p| > counter,[¢] = v, (because
it is always true thatcounter,[p] > counter,[p]. countery[p]is unbounded and monotonically nonde-
Therefore, there exists a time after which, for all catreasing). In all cases (*) holds. O
rect processeg, countery[p| = vp. From the above, Theorem 1 follows.
(2) Supposecountery[p] is not bounded. Ley be
any correct process. Either there is a time after whi
p & set2,, Orp € set2, infinitely often. In the latter
case, Lemma 10 implies thabunter,[p] is also not
bounded. O

2. If countery[p] is not bounded, then for ev-
ery correct process g, either countergy[p] is not
bounded or there is a time after which p ¢
set2q.

§1 Proof of Theorem 2

The theorem trivially holds ifi = 1. Henceforth, we
assume that > 2. Consider any algorithm that im-
plements in a systemS where at most one process

Lemma 12 If process p is not correct then for ev- ; i
may crash. We first observe the following:

ery correct process ¢ there is a time after which

P setly. Fact 14 For any run and any correct process p, if
Proof. After p crashes, it stops sending VE mes- there is a time after which p does not receive any
sages. So there is a time after which no processmessages from other processes, then there is a time
ceives(ALIVE, p,...) from any process. Thus, forafter which the leader of p is p (forever).

every correct procesg, there is a time after which
p & set2,. O To see this, consider a ruR such that after some

time t, some correct procegsdoes not receive any
Lemma 13 There exists a correct process ¢ and messages. Without loss of generality, we can assume
a time after which, for every correct process ¢, that no process crashesih(because if any process
leadery = /. f crashes at some timgin R, we can modifyR to
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get a similar run wher¢gf never crashes, but all its We now prove part (2) of the theorem. Partition
outgoing links die permanently at tinfe this modi- the set of processes ¢f into setA with [4] pro-
fied run is indistinguishable fromk to all processes,cesses, and sét with | | processes. Consider run
except for procesg who is now correct). SupposeR such that: (a) all thex processes are correct, (b)
by contradiction, that irR there is a time after whichall the links between processes ihare eventually
the leader ofp is a procesg # p. Let R be a run timely, (c) A has a source, so all the links froms
identical to R up to timet, and such that at someéo processes i are eventually timely, (d) for every
time ¢’ > t: (a) process; crashes, and (b) all theprocess # s in A, all the links fromr to processes
input links of p “die” permanently, while theutput in B are permanently dead, and (e) the output links
links of p become timely and stop losing messag&em every process i are permanently dead. So in
(p is a source). Procegsreceives exactly the sameun R, s is the only process that is able to commu-
messages ik and R'. Sincep cannot distinguish nicate with any process € B; all messages sent by
betweenRk and ¥, in R’ there is a time after whichother processes toare lost.

the leader op is ¢, even thoughy crashes—a contra- Note that in runR there is a time after which the
diction that concludes the proof of Fact 14. leader of any correct processis notp. Intuitively,

this is becaus@ may eventually crash, and singis
Wenow prove part (1) of the theorem. Suppose, by ,t0t links are permanently deaglwould not be
contradiction, that there is a ru such that two cor- e 14 notice this crash (we omit this proof as it is

rect processesandg do not send any messages aftef i r to one given above)
some timet. Without loss of generality, we can as-

. : We claim that inR, every process inl sends mes-
sume that inR: (a) all the output links op andq are yP

. sages forever to every process ih Suppose, for
eventually timely (and so bottp andq are Sources)’%)ntradiction that ink some process € A does

and (b) no process crashes (the argument is as &
) . not send messages forever to some progessB.
fore: we can “replace” the crash of a process, by W

: . . e consider two possible cases.

simultaneous and permanent failure of all its outgo- . .

ing links). Supposeg; = s. Recall that_ ink, q'(: _s) |s_the

only process able to communicate wjthSince inR

We first show that inR there is a time after whichihere is a time after which does not send messages

the leader of is notp. To see this, lef? be a run g, then eventually stops receiving messages. So,

identical to R except thap crashes ini? after time py Fact 14, inR there is a time after which the leader

t. Note that, except fop, no process can distinguishy j, js . Recall that inR there is a time after which

between runs? and R'. Sincep is faulty in ', in  the |eader of; is not p. Thus, in runR correct pro-

thus, inR there is a time after which the leader of |e5ger—a contradiction.

is notp. Now suppose; # s. Let R’ be a run which is

Now let R” be a run identical tak, except that similar to R, except that the source happens tagbe
in R” after timet: (1) all the output links ofp die rather thans. More precisely,R is like R, except
permanently, and (2) all the input links pfdie per- that all the links froms to processes i3 are per-
manently, except for the link fromto p (which, as in manently dead, and all the links frognto processes
run R, is eventually timely). Note that, except fpr in B are eventually timely. Since no processfn
no process can distinguish between rdthand R’. can communicate (their output links are permanently
Thus, inR” there is a time after which the leader afead in both? andR’), processes id cannot distin-
q is notp (as it was the case in ruR). In R’, p guish between rung andR. Thus, inR’ (asinR)
ceases to receive messages, and so, by Fact 14, there is a time after which: (a) the leaderga$ notp,
is a time after which the leader ¢fis p. Thus, in and (b)g does not send messagegtdince the link
R’ correct processgsandq do not reach agreementrom g to p is the only input link ofp that is not per-
on a common leader—a contradiction that concludeanently dead if?’, then there is a time after which
the proof of the first part of the theorem. p does not receive any messagédn So, by Fact 14,
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in R’ there is a time after which the leaderofs p. hold thenp is in Contenders, infinitely often so

Thus, in R’ correct processes and ¢ do not reach ¢ receives AIVE messages from infinitely often.

agreement on a common leader—a contradiction.Thus, at some timé, ¢ receives one AIVE mes-
Thus we proved our claim that in ruf every pro- sage sent after time Sincecounter,[p] andph,,[p]

cess inA sends messages forever to every procesaiia monotonically nondecreasing, theunter and

B. Since|A| = [§] and|B| = | 5], thisimplies that ph values in that message are at least as great

at least[2] - | 2] = (@Tfl)w links carry messages®S countery[p] and phl,[p], respe/ctively. Thus
forever in runR. counter!, [p] > counter![p] and phl[p] > phlp].
Condition (2) now follows sincecounter,|p] and
ph,[p] are monotonically nondecreasing. Finally,
note that ifp is faulty then there is a time after which

.never receives anlAvE message from. Soon af-

We now show correctness and communication e
. . R er, ¢ removesp from Contenders, and never adds
ciency of the algorithm in Figure 2. Let be an . .

. . . it back again. O
eventually timely source. Since all the output links
of s are eventuall)_/ timely there exists a valdeand Lemma 19 counter]s] is bounded.
a timeT; after which every message sent byakes

at mostA time to be received and processed.

C Proof of Theorem 4

Proof.  To obtain a contradiction, suppose that
counters[s] grows unboundedly. Thesareceives in-
Lemma 15 For every processp, wealwayshavep € finitely many up-to-date AcUSATIONS Note that
Contenders,. an up-to-date ACUSATION can only be received by

s if sis looping in lines 10-11: else,has increased
rphs[s] to a value greater than anything any process
has ever received. We can find a procgdbat in-
finitely often sends an up-to-dateCAUSATIONtO s

Definition 16 When a process p receives a message and incrementdimeout,[s]. So Timeout,|s] grows
(ACCUSATION, i) from ¢, we say the message isup-  t0 infinity. We now get to a contradiction by showing
to-dateiif i = ph,,[p]. that if Timeout,[s] > n + A at some timeg > T
thenp does not send an up-to-datecAUSATION to
Note that ifp receives an ACUSATION message s at timet + n + A. Indeed, suppose it did, and let
that is not up-to-date, it will ignore it. x be the value oph,[s] at timet +n + A. Then, (*)
p did not receive an AIVE message frons during
timesjt,t + n + A]. Moreover, (**) p must have re-
ceived(ALIVE, ... ,x) from s before timet +n+ A

Praoof. Every processp initializes its set
Contenders, to {p}. Sincep does not set a time
for itself, it never removes itself from this set. O

Observation 17 For every processes p and g,
countery[q] and ph,[q] are monotonically nonde-

creasing with time.

Proof. Clear from the wayounter,[q] and ph,,[q]
are updated. O

Lemma 18 For every process p and every correct
process ¢, either (1) there is a time after which
p € Contenders, or (2) for every time ¢, there is
a time after which counter,[p] > counter}[p] and
phylp] > phi[p]. Moreover, if p is faulty then (1)
holds.

Pr oof.

creasing. Now assumg # g¢. If (1) does not

(else it would not send an up-to-datecAUSATION
attimet +n + A). By (*) and (**), p must have re-
ceived(ALIVE,... ,z) from s before timet. There-
fore s sends such a message before timesay at
a timety. Thus, from timety, s continues looping
in lines 10-11 until at least time+ n + A. There-
fore, s sends(ALIVE, ... ,x) during timelt, ¢t + n].
Sinces is a timely source and > Ty, some ALIVE
message is received and processeg byring times
[t,t + n + A]—a contradiction. O

If p = ¢, condition (2) holds becausdefinition 20 Let L, be the largest value of
countery[p] and ph,[p] are monotonically nonde-

counter,[p| in the execution (or oo if countery[p]
is unbounded). Let ¢ to be the correct process with
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the smallest L, (break ties by process id) and let C' Proof. By Lemmas 18 and 24 and the fact that

beitsvalue of L,,. counterg[¢] eventually always equal€’, we con-
clude that there is a time after whichaunter,[(] =
Note that by Lemma 19, < cc. C at every correct procegs By Lemma 24, there

is a time after whiclY € Contenders,, so thatp
Lemma 21 Thereisa time after which leader, = ¢. Picks £ as leader as long as there no other process
q # ¢ in Contenders, with smaller countery|q|.
Proof. By Lemma 15, note that will pick itself Consider such a procegs# /. By Lemma 18 ei-
as leader as long as it does not find another prodées (1) there is a time after whighg Contenders,
p £ L in Contenders, with smaller COUTLt@?”g[p]. or (2) counterp[q] becomes Iarger tha@y (breaking
So consider a procegs # ¢. By Lemma 18 and ties using process id). 0
definition of C, either there is a time after which _ , ,
p & Contenders, or counter,[p] becomes IargerLemma26 There is a time after which only ¢ sends
thanC' (breaking ties using process id). O es.
Proof. There are only two types of messages:
Corollary 22 There is a time after which ph,[¢] ALIVE and ACCUSATION. ALIVE messages are only
stops changing. sent by a process if it thinks itself is the leader, so
by Lemma 25, (*) there is a time after which only
Proof. Indeed,ph,[¢] can only change whefire- ¢ sends AIVE messages. We now claim that there
linquishes leadership, which can only happen a fini¢ea finite number of £CUSATION messages sent.
number of times by Lemma 21. 0O Indeed, an ACUSATION message is only sent to
p if timer(p) is started, which can only happen if
Definition 23 Let ¢phase be the final value of (ALIVE,...) is received fromp. Thus, because of
phyll]. (*), there is a time after which the only@CUSATION
messages sent are sent#o When a procesg
Note that sinceph,[¢] is monotonically nonde-Sends(ACCUSATION,...) to £ it removes( from
creasing/phase is also the largest value oh,[¢].  Contenders, and so, by Lemma 24, this can only
happen finitely often. O
Lemma 24 For every correct process p there isa ~ From Lemmas 25 and 26, Theorem 4 follows.
time after which ¢ € Contenders,.

- D Proof of Theorem 5
Praoof. By Lemma 21 and the definition of’

and (phase, note that! sends(ALIVE, C, {phase) e now show correctness and communication effi-
infinitely often.  Hence, since links are faipy ciency of the algorithm in Figure 3. Letbe an even-
receives (ALIVE, C, fphase) from ¢ infinitely of- 4|y timely source and Iet be a fair hub. Since all
ten. We claim thatp can only removel from the output links of are eventually timely there exists
Contenders), finitely often, which immediately im- 5 yalueA and a timeT; after which every message

plies the lemma. We show the claim by contradigent bys takes at most time to be received and

tion: if p removed from Contenders, infinitely of-  processed.

ten, thenp sends(ACCUSATION, {phase) messages

to ¢ infinitely often. Since links are fairf receives Lemma 27 For every process p, we always havep €

(ACCUSATION, ¢phase) infinitely often, and so it Contenders,.

eventually increm(_en'F30unterg[€] to a value greater,. ¢ |dentical to the proof of Lemma 15. O

thanC—a contradiction. O
Definition 28 When a process p receives a message

Lemma 25 Thereisatimeafter whichfor everycor- (ACCUSATION, p,7) from ¢, we say the message is

rect process p, leader, = £. up-to-date if i = ph,[p].
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Observation 29 For every processes p and ¢, Sinces is a timely source and > 7j, some A.IVE
counterplq] and ph,[q] are monotonically nonde- message is received and processeg tyring times
creasing with time. [t,t +n + A]—a contradiction. )

Proof. Clear from the waycountery|q| andphy[q] pefinition 32 Let L, be the largest value of
are updated. = counterp[p] in the execution (or oo if counter,[p]
is unbounded). Let ¢ to be the correct process with
the smallest L, (break ties by process id) and let C
beitsvalue of L.

Lemma 30 For every process p and every correct
process ¢, either (1) there is a time after which
p € Contenders, or (2) for every time ¢, there is
a time after which countery[p] > counterj[p] and
phylp] > phl[p]. Moreover, if p is faulty then (1)
holds.

Note that by Lemma 31 < .

Lemma 33 Thereisatime after which leader, = ¢.

Proof.  Identical to the proof of Lemma 18. - Proof. ldentical to the proof of Lemma 21. O

Lemma 31 counters[s] is bounded. ] ] )
Corollary 34 There is a time after which ph,[(]

Proof. (Similar to the proof of Lemma 19) To ob-stops changing.

tain a contradiction, suppose thatunters[s|] grows

unboundedly. Ther receives infinitely many up_to_Proof. Identical to the proof of Corollary 22. O

date(ACCUSATION, s, ... ) messages. Note thatan .

up-to-date ALCUSATION can only be received by Definition 35 Let /phase be the final value of

if s is looping in lines 10-11: elss, has increased?/[(]-

ph,[s] to a value greater than anything any process _ _ _

has ever received. We can find a procpdhat in-  'Note that sinceph,|(] is monotonically nonde-

finitely often sends an up-to-datecAUSATIONto s Cr€@Sing/phase is also the largest value ghy[¢].

and incrementdimeout,[s]. S0 Timeout,[s] grows

to infinity. We now get to a contradiction by showin%:mma 36 NOE ‘ol process _ f_9?$5
that if Timeout,[s| > n+ A at some time > Ty ofteCnCUSATION’ ,{phase)  messages infinitely

thenp does not originate an up-to-date€ AUSATION
to s attimet + n + A. Indeed, suppose it did, an@roof. To obtain a contradiction, sup-

letz be the value oph,[s] attimet + 7 + A. Then poqe that some process sends infinitely many
(1) p did not receive an AIVE message during imes s ccysartion, £, (phase) messages. Of those, in-
[t,t+n+ AJand (2) ifp receives a BECK message finjtely many get relayed throughand reach, since

during [t,t + 7 + A] then timer(s) is on at the re- ; g 4 fajr hub, Thereforé eventually increments
ceipt time. Moreover, (3) before time+ 1 + A, p .,y nter,[4] to a value greater thafi—a contradic-
must either (a) have receivé@LIVE, ... ,z) from 4o 0

s or (b) have receive(CHECK, s, ) while timer(s)

is off: indeed, if (3) did not hold thep would not | emma 37 Thereisatime after which leader, = ¢
send an up-to-date @CUSATIONat timet + 1 + A. - and ph, [(] = Cphase.

By (1), (2) and (3)p must have received before time

t either(ALIVE,... ,z) from s or (CHECK, s,z). In Proof. If h = ¢ the result follows from Lemma 33
either case;s sends(ALIVE,... ,z) at some time and the definition of phase. Now assumé # ¢. By
to < t (a small induction argument shows that a prbemma 33 and the fact thatis a fair hub i receives
cess can only senHECK, s, x) if s previously sent an infinite number of AIVE messages from It fol-
(ALIVE, ... ,z)). From timety, s continues looping lows that (*) there is a time after whichh,[¢(] =
in lines 10-11 until at least time+ n + A. There- ¢phase. Moreover,/{ is added toContendersy, in-
fore, s sends(ALIVE, ... ,x) during time[t, ¢t + n]. finitely often. By Lemma 30 and the definition of
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¢ and C, there is a time after which for every prohave phaséphase due to (**). This violates Lemma
cessq # /, either (a)q ¢ Contendersy,, or (b) 36—a contradiction. O
(countery[q],q) > (C,¢). Thereforeh chooses/ o .

as leader infinitely often. We claim thatremoves Leémma39 Thereisatimeafter which for every cor-

¢ from Contenders;, only finitely often, and so the€ct Process p, leader), = {.

lemma follows. We show the claim by contradigeroof. By Lemma 38, there is a time after which
tion. Suppose tha removes( from Contenders, for every correct process, only p and ¢ can be
infinitely often. Then,h sends AACUSATION MeS- in Contenders, (p is in its own Contenders, by
sages ta/ infinitely often. By (*), infinitely many | emma 27, bup needs to receive aniAvE mes-
such messages a(CCUSATION, ¢, {phase). This sage fromy + p for ¢ to be in Contenders,). Hence
violates Lemma 36. U only p and? can be leaders at We now claim it is
impossible for leadership to switch betweeand/
Lemma 38 Thereisa time after which only ¢ sends infinitely often. Indeed, by definition of, there is a
ALIVE messages. time after whichp can choose itself as leader only if
¢ & Contenders,. Hence if leadership switches be-

Proof. By contradiction, suppose some procei¥eenp and/ infinitely often then? is added to and

p # ¢ sends AIVE messages forever. We firsiemoved fromContenders,, infinitely often, and so
claim thatp # h. Indeed, ifp = h then there (1) p eventually receives anlAvE message frond
are two casesh = (—which contradictyy # (— with phase/phase and so there is a time after which
andh # £. In the latter case, we get a contradi¢/ip[{] = ¢phase, and (2)p sends an infinite num-
tion by Lemma 37 and the fact thatcan only send ber of AccusaTIONSto £, and infinitely many have
(ALIVE,...) if & thinks itself as the leader. Thidhase equal téphase. This violates Lemma 36—a
shows the claim that # k. We now claim that () contradiction that shows the claim. Therefore there
p only receives finitely many AVE messages fromiS a time after which eithef or p is always the leader

¢. Indeed, from the definition of, there is a time atp- Butp cannot always be the leader aelsep
after whichp can only consider itself as leaderdf S€nds AIVE messages infinitely often, contradict-
is not in Contenders,. So, if p receives infinitely INg Lemma 38. -
many ALIVE messages from, then infinitely many
of those have phase equal &4phase. Sop adds{
to Contenders), infinitely often, and s@ removes/
from Contenders, infinitely often, and sg sends Proof. There are three types of messages:ivk,
(ACCUSATION,Z, ¢phase) to ¢ infinitely often. This CHECK and ACCUSATION. By Lemma 38, (*) there
violates Lemma 36—a contradiction that shows (is a time after which only/ sends AIVE mes-
Now sincep sends AIVE messages infinitely oftensages. By Lemma 39, this implies that (**) there

h receives such messages infinitely often. By Lemiisaa time after which no @ECK messages are sent:
37, there is a time after whichis the leader of.. indeed, such messages are only sent when a pro-
After that time, each timé: receives AIVE from cessp receives an AIVE message fromy and ¢

p, h sends(CHECK, /,...) to p. Sinceh is a fair is not p's leader. We now claim that there is a
hub, p receives such messages infinitely often. Aimite number of ALCUSATIONS sent. Indeed, an
infinite number of such messages contains a ph&88€CUSATION, p, ... ) message is sent either when
equal to/phase (because there is a time after whictimer(p) expires, or when it is relayed in line 36.
ph,[¢] = f¢phase by Lemma 37). Therefore (**) The message can be relayed at most once per pro-
there is a time after whiclph, [¢] = {phase. Fur- cess. Nowimer(p) expires only ifitis started, which
thermore, the BECK messages ensure thastarts can happen only if an AVE message is received

a timer on/ infinitely often. Then, because of (*)from p or if a (CHECK, p, ... ) message is received.

p times out or¢ infinitely often and sends infinitelyThus, because of (*) and (**), there is a time af-
many ACCUSATIONSto /. Infinitely many of those ter which the only A£CUSATION messages sent are

Lemma40 Thereis a time after which only ¢ sends
messages.
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(ACCUSATION, /,...). If this message is relayed

in line 36, then some process previously sent it in

line 28. When a procesgsends it in line 28¢ re-

moves/ from Contenders,, which can only happen

finitely often by Lemma 39 (note thatcan only have

¢ as leader whil¢ € Contenders,). O
From Lemmas 39 and 40, Theorem 5 follows.
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