Using Failure Detectors to Solve Consensus
in Asynchronous Shared-Memory Systems
(Extended Abstract)

Wai-Kau Lo* and Vassos Hadzilacos™

Department of Computer Science
University of Toronto
6 King’s College Road
Toronto, Ontario

Canada M5S 1A4

Abstract. Chandra and Toueg proposed a new approach to overcome
the impossibility of reaching consensus in asynchronous message-passing
systems subject to crash failures [6]. They augment the asynchronous
message-passing system with a (possibly unreliable) failure detector. In-
formally, a failure detector provides some information about the pro-
cesses that have crashed during an execution of the system. In this pa-
per, we present several Consensus algorithms using different types failure
detectors in asynchronous shared-memory systems. We also prove sev-
eral lower bounds and impossibility results regarding solving Consensus
using failure detectors in asynchronous shared-memory systems.

1 Background and Overview of Results

It is well-known that there is no deterministic algorithm for Consensus in asyn-
chronous distributed systems, even if a single process may crash; this result
applies both to message-passing and shared-memory systems [9, 7, 11].3 This
impossibility result has motivated the use of randomisation to solve Consensus.
Many randomised Consensus algorithms have been devised for both message-
passing and shared-memory asynchronous systems [4, 3].

Recently, Chandra and Toueg [6] introduced another approach to overcome
the impossibility of reaching Consensus in asynchronous message-passing sys-
tems subject to crash failures. In their approach, the asynchronous model is
augmented with a (possibly unreliable) failure detector. Informally, a failure de-
tector, denoted D, consists of a collection of modules, one associated with each
process. The failure detector module associated with process p is denoted D,,
and can be accessed only by p. At any time, p can query its local failure detector

* Supported by a Canadian Commonwealth Scholarship.

** Supported, in part, by a grant from the Natural Sciences and Enginerring Research
Council of Canada.

? Unless stated otherwise, throughout this paper we assume that shared memory con-
sists only of atomic read-write registers.

module D,, and D, will return to p a set of processes that it suspects to have
crashed at that moment. A failure detector D, however, may make “mistakes”;
e.g., D, may suspect a process ¢ that has not crashed. If D, learns, at a later
time, that process ¢ is still alive, it can remove ¢ from its set of suspects.

Chandra and Toueg classify failure detectors according to their completeness
and accuracy properties. Loosely speaking, these specify, respectively, lower and
upper bounds on the set of processes that a failure detector can suspect. Two
completeness properties are defined:

— Strong (Weak) Completeness: There is a time after which every process that
crashes is permanently suspected by every (some) correct process.

Similarly, we have Strong and Weak Accuracy, defined as follows:
— Strong (Weak) Accuracy: Every (some) correct process is never suspected.

In addition, for each of the two accuracy properties, there is an eventual version,
which states that there is a time after which the corresponding accuracy property
holds. For instance, Eventual Weak Accuracy states that there is a time after
which some correct process is never suspected.

A failure detector can be specified by choosing a completeness and an ac-
curacy property. For example, an Eventual Weak failure detector, denoted oW,
satisfies Weak Completeness and Eventual Weak Accuracy. Note that the quality
of information about failures that such a failure detector provides can be quite
poor: A correct process can be permanently suspected by all other processes;
it can also be suspected and then not suspected repeatedly (infinitely often) by
the other processes.

Chandra and Toueg [6] define a host of different failure detectors by consid-
ering different combinations of completeness and accuracy properties. For each
failure detector they consider they give an algorithm for Consensus that uses
that failure detector.

In a related paper, Chandra, Hadzilacos and Toueg [5], prove that oW is,
in fact, the weakest failure detector that can be used to solve Consensus. More
precisely, they show that any failure detector D that can be used to solve Con-
sensus can also be used to emulate ©J/. Thus, D must provide at least as much
information about failures as does ¢V, and oW is therefore the weakest failure
detector that can solve Consensus.

All of the work on failure detectors mentioned above is in the context of asyn-
chronous message-passing systems. Given the strong analogies in the results re-
garding Consensus between message-passing and shared-memory systems (Con-
sensus is not solvable in either by means of deterministic algorithms, but solvable
in both by means of randomised algorithms), it is natural to ask whether, and
to what extent, the analogies persist when we introduce failure detectors. This
is the subject of this paper. We find that many of the results cited above extend
to shared-memory systems, although some discrepancies exist. Thus, our results
highlight both the similarities and the differences between shared-memory and
message-passing distributed systems, and are part of the effort to understand

how these two fundamental models of distributed computation relate to one
another.

In this paper we assume that only processes may fail, and do so by crash-
ing, i.e., halting prematurely. In particular, the shared registers behave correctly.
Problems related to tolerating faulty registers are discussed in [2, 10]. We now
give an overview of our results. First, some definitions (cf. [6]): A Strong fail-
ure detector satisfies the Strong Completeness and Weak Accuracy properties;
an Eventual Strong failure detector satisfies Strong Completeness and Eventual
Weak Accuracy. Similarly, a Weak failure detector satisfies Weak Completeness
and Weak Accuracy; an Fventual Weak failure detector satisfies Weak Com-
pleteness and Eventual Weak Accuracy.

In this paper we present a Consensus algorithm that uses a Strong failure
detector, and one that uses an Eventual Strong failure detector. Both algorithms
use n l-writer-n-reader registers; in the first the registers are of bounded size,
while in the second they are unbounded. Both algorithms are wait-free; i.e.,
they can tolerate up to n — 1 faulty processes. It is noteworthy that in message-
passing systems any algorithm that solves Consensus using an Eventual Strong
failure detector requires that a majority of the processes be correct [6]. Thus, our
Consensus algorithm for the Eventual Strong failure detector reveals an inher-
ent difference between message-passing and shared-memory systems. Intuitively,
this is a reflection of the fact that in an asynchronous message-passing system,
a message may be delayed for arbitrarily long; thus whether the process sending
the message has taken the corresponding step can remain hidden from the rest of
the processes for an unbounded amount of time. In contrast, in shared-memory
systems, when a process writes a value into a register, the fact that this has
occurred cannot be hidden from any process that subsequently reads that regis-
ter. The significance of this behaviour was originally noted in [7], in the closely
related context of partially synchronous message-passing systems.

Chandra and Toueg showed how to emulate a Strong (resp. Eventual Strong)
failure detector using a Weak (resp. Eventual Weak) one in message-passing
systems [6]. The algorithm that accomplishes these emulations can be adapted
to shared-memory systems in a straightforward manner, and we therefore get
wait-free Consensus algorithms that use these two weaker failure detectors.

In addition to the algorithms, we prove some lower bounds and impossibility
results about reaching Consensus using a Strong failure detector. First, we show
that if only 1-writer-n-reader registers are allowed, then any wait-free Consensus
algorithm for n processes that uses a Strong failure detector must use at least n
registers. Thus, as far as the number of 1-writer-n-reader registers is concerned,
our algorithms are optimal.

Our Consensus algorithms require the shared registers to be initialised to
specific values. It is interesting to ask whether it is possible to devise algorithms
that can solve Consensus without requiring such initialisation. We prove that
this is impossible if the correct processes are required to eventually halt after
deciding. (Our Consensus algorithms satisfy this additional requirement.) On
the other hand, if the correct processes are allowed to remain active forever after

deciding, then it is possible to solve Consensus using a Strong failure detector
without requiring that shared memory be initialised.

Finally, we show that the Eventual Weak failure detector is the weakest one
that can solve Consensus in asynchronous shared-memory systems, just as it is in
message-passing systems. The proof technique follows closely the one presented
in [5], except for some technical difficulties that arise as a result of the difference
between message-passing and shared-memory asynchronous systems that was
pointed out previously.

The rest of the extended abstract is organised as follows: In Section 2, we
briefly describe our model of computation. In Section 3, we present our Consen-
sus algorithms that use different types of failure detectors. Section 4 contains
some lower bounds and impossibility results. We conclude in Section 5 with a
discussion of some open problems.

2 Model of Computation

Our model of computation follows [5] and [11]. In this extended abstract we only
sketch the main features of the model, without going into all the formal details.
An asynchronous shared-memory system with a failure detector consists of:
(1) a set of shared atomic read/write registers R; (2) a set of n asynchronous
processes P; and (3) a failure detector D. To simplify the presentation, we assume
the existence of a discrete global clock with the set of natural numbers, denoted
T, as the domain of its clock ticks. Processes do not have access to this clock.

2.1 Failure Detectors

A failure pattern F is a function from 7 to 2¥, where F(t) denotes the set of
processes that have crashed by time ¢; we require that for all t € T, F(¢) C
F(t+1). We say that p crashes in F if p € F(t), for some ¢t € T; otherwise we
say that p is correct in F'.

Let R be a set of failure detector values. These represent the values that
failure detector modules can return.* A failure detector history H is a function
from P x 7 to R; intuitively, H(p,t) is the value of p’s local failure detector
module at time t in a particular execution. A failure detector D is a function that
maps each failure pattern F' to a set of failure detector histories. Informally, if
H € D(F) then H is one of the possible behaviours of the failure detector D when
the failure pattern is F'. Each completeness and accuracy property described
in Section 1 implicitly defines a set of allowable failure detector histories that
correspond to a given failure pattern. Thus, we can specify a failure detector (in
the formal sense just stated) by fixing a completeness and an accuracy property.

* Typically the failure detector returns a set of “suspected” processes, in which case
R = 2F. The greater generality allows us to model failure detectors that return
values like “p and either ¢ or ¢’ has crashed”.

2.2 Algorithms Using Failure Detectors

An algorithm A for n processes using a failure detector D (in an asynchronous
shared-memory system) is modeled as n (possibly infinite state) deterministic
automata, one for each of the processes. Let A, be the automaton running on
process p. A configuration C of the system (w.r.t. algorithm A) consists of the
states of each automaton and each register.

Informally, in a step of algorithm A | some process p atomically executes one
of the following operations: (1) read a value from a register, (2) write a value
into a register, or (3) query the local failure detector module. The operation
that a process executes next, and the value that it writes, in the case of a write
operation, depends only on its local state. The new state of the process after it
executes a step is determined by its present state and, in the case of a read or
query operation, by the value of the register read or the value returned by the
failure detector.

We represent a step of process p by the triple (p, 0, v); o can be one of read(r),
write(r) (where r is a register) or guery, and represents the operation that p
executed in the step; and v is the value read or written (if o = read(r) or
write(r)), or the value returned by the failure detector (if 0o = query). We say
that the step (p,0,v) is applicable to configuration C' if the following holds: Let
s be the state of p in C. The automaton A, defines o to be the next operation
of p when in state s; furthermore, if o is read(r), then v is the value of r in C,
and if o is write(r) then v is the value which A, specifies that p should write
into register r when in state s. If step e is applicable to C' we denote by ¢(C)
the configuration that results after we apply e to C'. Configuration e(C') differs
from C only in the state of the process that takes step e, and in the value of the
register written by that process, if e is a write step.

A schedule S is a finite or infinite sequence of steps of the algorithm. S[¢]
denotes the ith step of S. A schedule S is applicable to a configuration C' if and
only if S is the empty sequence, or S[1] is applicable to C, and S[2] is applicable
to S[1](C), ete.

A run of algorithm A in a system using failure detector D is a tuple (F, H, I,
S,T) where F is a failure pattern, H € D(F) is a failure detector history of D, I
is an initial configuration of A,®> S is an infinite schedule of A that is applicable
to I, and T is an infinite sequence of increasing time values such that, for all
i >0,if S[i] = (p, 0,v), then (1) p has not crashed by time T7¢], i.e.,p & F(T[t]);
(2) if o = query, then v = H(p, T[t]); and (3) every correct process in F' takes
an infinite number of steps in S.

The correctness of an algorithm may depend on certain aspects of the “envi-
ronment” — for example, the number of processes that crash. For our purposes,
an environment & is simply a set of failure patterns. For instance, & could be
the set of all failure patterns in which no more than f processes crash, where f
is some parameter.

® That is, a configuration in which each process is in an initial state, and the registers
have the initial values specified by A, if any.

2.3 The Consensus Problem

In the Consensus problem, each process p starts with an initial value init,
originally only known to itself. (Formally, this initial value is reflected in the
initial state of A,.) Through communicating with other processes, all correct
process must eventually decide (irrevocably) the same value, and that value
must be one of the processes’ initial values.

More precisely, an algorithm Cp solves Consensus using a failure detector D
in environment & if and only if for any failure pattern F' € &, failure detector
history H € D(F'), and initial configuration I of Cp, every run (F, H,1,S,T) of
Cp satisfies the following properties:

Termination: Every correct process eventually decides a value.
Validity: Every correct process decides the initial value of some process.
Agreement: No two correct processes decide different values.

3 Solving Consensus Using Failure Detectors

In this section, we present two algorithms that solve Consensus in asynchronous
shared-memory systems using different types of failure detectors; the first uses
a Strong failure detector, while the second uses an Eventual Strong one. In both
algorithms the n processes pi,...,p, communicate through n shared l-writer-
n-reader atomic registers rp,,, ..., .. Register r, can be written only by p, but
can be read by all processes. Both algorithms are wait-free, i.e., they can tolerate
up to n — 1 crash failures.

Besides standard programming language constructs, we use the following
notation in the description of the algorithms: read(r, v) denotes a read operation
on register r, returning value v. Similarly, write(r, v) denotes the operation of
writing v into r. S, denotes the set of suspected processes returned by p’s module
of a Strong failure detector. ¢S, has a similar meaning, except for an Eventual
Strong failure detector.

In both algorithms, the computation of each process consists of a sequence of
asynchronous rounds. (We shall be more specific about what constitutes a round
as we discuss each algorithm.) We denote the value of a local variable var, of
process p at the end of round [as var;; varg is the value of the variable just
before p’s round 0.

3.1 An Algorithm Using a Strong Failure Detector

In this extended abstract we present a version of the algorithm that solves binary
Consensus — i.e., the special case where the initial values of processes are 0 or
1. A minor variation of the algorithm (with a somewhat more complex proof,
however) solves the general problem. This will be given in the full version of the

paper.

The code for process p
shared: rp, (initially (0, L)) fori=1,...,n
CP — {pla”'ap"}
vp — 1nily
for l — 1 to » do
write(rp, ({,vp))
repeat
My, — {(g,15,vq) | read(rq, (g, v4)) where l; >l and g € Cp}
until Vg € Cp: (q,1g,v4) € My or q € S})
Cp —{a | (a,lg,vg) € My}
9 if v, =1 and 3(q, {4, 0) € M, then
10 vy — 0
11 write(ry, (n+1,vp))
12 repeat
13 My — {(g,1q,vq) | read(rq, (Ig,vq)) where I, =n +1 and ¢ € Cp}
14 until Vg€ Cp: (¢,n+ 1,v4) € M, or g € Sp]
15 if (¢, m +1,1) € M, then

GO =1 O UL = W N

16 decide 1
17 else
18 decide 0

Alg. 1. Solving Consensus using a Strong failure detector S

An execution of Algorithm 1 proceeds in n 4+ 1 asynchronous rounds. Each
process maintains a current “estimate” for the decision, and proposes that esti-
mate in each round. Process p’s initial proposal is its initial value init, € {0, 1}.
A process with proposal 1 changes its proposal to 0 in any one of the first n
rounds if some process that it still “trusts” (i.e., that it has not yet found being
suspected by its failure detector module) has proposal 0 (lines 9-10). In the last
round, n + 1, if some correct process that is never suspected by other processes
(such a process must exist by the Weak Accuracy property) has proposal 1, then
all correct processes will decide 1; otherwise all correct processes will decide 0
(lines 15-18).

In Algorithm 1, each process p has three local variables v,, C}, and M, that
store the estimate of the decision, the set of processes that p trusts, and the
current set of proposals by processes in C,, respectively. We say that p is in
round 1 < ! < n if it is in the /th iteration of the for loop; it is in round n + 1
if it has completed the for loop. We say that p proposes v in round [if U‘L =.
Finally for 1 <1 < n (i.e., for the first n rounds only), we say that p changes its
proposal in round [if vll,_l # v;. Note that by this definition a process can only
change its proposal from 1 to 0 (see lines 9-10).

Lemmal. For any round [, 1 <[< n, if no process changes its proposal in
round [, then no process will change its proposal after round I.

Proof: Omitted from the extended abstract. [|

Lemma 2. For any process p and round l > 1, if p changes its proposal in round
l, then there exist |+ 1 distinct processes qo, q1, - .., qi(= p) such that process qo
has initial value 0 and q; changes its proposal in round j, for all j,1 < 7 <.

Proof: By induction on [. Consider the base case, [= 1. Since p changes its
proposal in round 1, there must exist another process g¢ that has initial value 0.
(Otherwise, all processes have initial values 1, and no process would change its
proposal.)

For the induction step, assume that Lemma 2 is true for all [< m, for some
m > 1. Suppose that p changes its proposal in round m + 1. By Lemma 1,
there must exist a process g that changes its proposal in round m. By induction
hypothesis, we have m + 1 distinct processes qo, . .., ¢gm(= ¢) with the required
property. In addition, p € {qo,...,qm} as process p proposes 1 in every round
before m+ 1. So, we get m+ 2 distinct processes qg, 1, - - ., ¢m, p that satisfy the
lemma, as wanted. [|

Theorem 3. Algorithm 1 is a wait-free Consensus algorithm for asynchronous
shared-memory systems with a Strong failure detector.

Proof: By Strong Completeness, every correct process eventually suspects all
processes that have crashed. So, no correct process will wait forever in the two
repeat until statements (lines 5-7, 12-14) of Algorithm 1. Hence, every correct
process will decide a value, and Termination is satisfied. Since the initial proposal
of every process is its initial value, Validity is satisfied. It remains to show that
Algorithm 1 also satisfies Agreement.

Let ¢ be a correct process that is never suspected by other processes. (Pro-
cess c¢ is guaranteed to exist by the Weak Accuracy property of Strong failure
detectors.) From lines 9-10 of Algorithm 1, if init, = 0 then all processes that
complete round 1 will have proposals 0 at the end of round 1. Note that once a
process proposes 0 in a round, it will propose 0 in all subsequent rounds. There-
fore, for every correct process p, if (¢,n+ 1,v,) is in Mg“ then v, = 0. Thus,
all correct processes will decide 0 (lines 15-18).

Assume init, = 1. If process ¢ does not change its proposal during the execu-
tion of the for loop, i.e., ¢ never executes line 10 of Algorithm 1, then all correct
processes will decide 1 (lines 15-18), as (e,n + 1,1) € MI?‘H for every correct
process p. Suppose that process ¢ changes its proposal in round m. There are
two cases to consider:

1. (m < n) : All processes that complete round m + 1 must have proposals 0
at the end of round m+ 1 (lines 9-10). Hence, for every correct process p, if
(¢,n+1,v,)isin M;‘H, then v, = 0. Thus, in this case, all correct processes
decide 0.

2. (m = n) : By Lemma 2, we would have n + 1 distinct processes. This leads
to a contradiction.]

Algorithm 1 solves only binary Consensus and uses registers of size O(logn).
By a slight modification, Algorithm 1 can solve multi-valued Consensus using

registers of size O(log|V]), where V is the domain of the initial values. The
main change is that in the first n rounds each process changes its proposal to
the minimum of the values in M,,, while in the last round it chooses the mazimum
of the values in M, as its final proposal (and decision). We omit this version of
the algorithm from the extended abstract.

3.2 An Algorithm Using an Eventual Strong Failure Detector

We now give an algorithm that solves Consensus using an Eventual Strong failure
detector. Each process p has two local variables {, and vy, which serve as a round
counter and an estimate of the decision, respectively. We say that process p is
in round [if [, = [. The values of the shared registers in this algorithm are of
the form (I, v, g) where [is the round number in which the value was written,
v is the current proposal of the register’s owner and g is a tag that could be
announce, propose, or decide.

Algorithm 2 follows the “rotating coordinator” paradigm [6]. Process p; is the
coordinator of asynchronous round /, if and only if i = ({ mod n) 4+ 1. In every
round /, each process p first “announces” its estimate by writing ({, v,, announce)
into its own register r,. Depending on whether it is the coordinator of round {,
p does the following:

1. If p is the coordinator of round ! and if no process is ahead of it (i.e., has
reached a later round), then p changes its estimate to that most recently
proposed by some process, if any, and “proposes” its estimate by writing
(I, vp, propose) into r,. After p proposes its estimate, if all other processes
are still in round [or below, then p decides its own estimate. Otherwise, p
advances to round [+ 1.

2. If process p is not the coordinator of round [, then it waits until (1) the
coordinator ¢ of round [has decided, (2) ¢ has advanced beyond round [, or
(3) its local failure detector module suspects c. In the first case, p decides
¢’s estimate; otherwise, it advances to round [+ 1.

In both cases, if p decides value v in round !, it writes (, v, decide) into r,.
Note that, in Algorithm 2, procedure scan-registers() reads the n shared registers
(in arbitrary order) and returns the set of values read, each prefixed with the
name of the process that owns the register.® Also, Algorithm 2 uses unbounded
memory as variable [,’s may grow indefinitely.

Lemmad4. No correct process can be stuck in the repeat until statement (lines

22-24).

Proof: Omitted from the extended abstract. [|

6 This procedure is not to be confused with the scan of an atomic snapshot object
[1]: We do not require that scan-registers be linearised with respect to the other
write and scan-registers operations. Only the individual reads that are within scan-
registers are linearised with respect to the other read and write operations.

The code for process p
shared: rp; (initially 1) fori=1,...,n

1 I, <0

2wy — inity,

3 repeat forever

4 lp — L, +1

5 ¢ = Pu, mod n)+1

6 write(rp, (Ip, vp, announce))

7 if p=cthen (*p is the coordinator *)

8 M, — scan-registers()

9 if 3(q, lg, vq, decide) € M, then

10 write(rp, (I, vq, decide))

11 decide v4 and halt

12 if V(Iy,vq,94) € Mp: 1y <1, then

13 if 3(q, Iy, vq, propose) € M, then

14 lmaz — max{ly | (¢4, vq, propose) € My}
15 vy — vgq, where (g, lnas, vq, propose) € M,
16 write(ry, (Ip, vy, propose))

17 N, — scan-registers()

18 if V(q,14,vq,94) € Np: lg <1 then

19 write(ry, (Ip, vy, decide))

20 decide v, and halt

21 else (*p isnot the coordinator *)

22 repeat

23 read(rc, (I, ve, gc))

24 until [l. > I, or g. = decideor c € oS,]
25 if g. = decide then

26 write(rp, (I, ve, decide))

27 decide v. and halt

Alg. 2. Solving Consensus using an Eventual Strong failure detector ¢S

Lemma 5. If a process decides, then all correct processes will decide.

Proof: Suppose, to the contrary, that a correct process p never decides, even
though some process has decided. Let [be the earliest round in which a process
decides, and let ¢ be that process and v be the value it decides. From Algorithm 2,
q wrote (I, v, decide) in 7, in round {. By Lemma 4, p cannot be stuck in the
repeat until statement. Therefore, p eventually advances to a round I’ in which
¢ is the coordinator. From lines 22-27 of Algorithm 2, process p will decide (in
round). |

Lemma 6. At least one process will decide.

Proof: Suppose, to the contrary, that no process ever decides. By Strong Com-
pleteness, there is a time ¢; after which every process that crashes is suspected
by every correct process. By Eventual Weak Accuracy, there is a time ¢ after
which some correct process ¢ is never suspected by any other processes. Let t3 be

a time by which all faulty processes have already crashed. Let t = max{t1, 2,13}
and ! be the highest round to which any process has advanced at time ¢. Clearly,
only correct processes take steps after ¢.

Let I, be the earliest round that is greater than ! in which ¢ is the coordinator.
By our assumption, ¢ cannot decide in round [.. This implies that ¢ must have
found some other correct process p that has already advanced beyond round [,
when it executes either line 12 or line 18 in round /.. From line 24 of Algorithm 2,
however, p can advance from round /. to round I. + 1 only if ¢ has finished
executing round [, since g. = decide and ¢ € ¢S, are always false to p in round
{.. This leads to a contradiction. [|

Lemma 7. No two processes decide different values.

Proof: Let [be the earliest round in which a process decides by executing
line 20 of Algorithm 2 (such a round must exist by Lemma 6 and the fact that
it is not possible for all processes that decide to do so in line 11). Let p be that
process, and v be its decision value. Clearly, p is the coordinator of round I. We
say that a process proposes its estimate in round [if it executes line 16 in round
[. By this definition, only the coordinator of a round can propose a value in that
round. First, we prove the following claim.

Claim 1 For any round [> i, if the coordinator of round | proposes a value v,
then v = 0.

Proof of Claim 1: We prove the claim by induction on [. The base case, [= Z,
is obvious since only process p can propose a value in round /.

For the induction step, assume that the lemma is true for all [,] <l<m,
for some m > l.

Suppose the coordinator ¢ of round m+ 1 proposes v, (in round m+1). Since
p decides v in round i, when p executes line 18 in round Z, it must find (¢, l¢, *, %)
in N; such that [, < [. In other words, p must have proposed v before ¢ reaches

round [+ 1. Therefore, since I+1 < m+1, ¢ must find either (p, Z, 0, propose) or
(p, 13, decide) in M+ 1f (p, [, decide) € M+ then ¢ would have decided in
round m + 1 by executing line 11 and would not have proposed a value in round
m + 1. Therefore, we have (p, i, v, propose) in M™*1. So, ¢ must have executed
lines 14-15 in round m+ 1. Let ¢ be the process that ¢ selects in line 14 in round
m+ 1, i.e., ¢ finds (¢, lnaz, v, propose) € M1 Hence, we have v, = v,.

By definition, ¢ proposed v, in round l,.;. It is clear that [< lnae as
(p, I3, propose) is also in M™*!. Also, since ¢ proposes v, (= v,) in round m+1,
we must have lyey < m 4+ 1 (line 12). Since ¢ is not the coordinator of round
m+ 1, we have l,;,4, < m+ 1. By induction hypothesis, as ig lnar <m+1, we
have v, = v. Therefore, v. = . [|

Suppose that some process g decides v in round [,. There must exist a process
q' (maybe q itself) that decides v by executing line 20 in some round [. By our

assumption that [is the earliest round in which a process decides by executing

line 20, we have { > I. From Algorithm 2, process ¢’ must have proposed v in
round [. Therefore, by the claim above, we have v = v. This shows that all
processes that decide, decide the same value v, as wanted. [|

Theorem 8. Algorithm 2 is a wait-free Consensus algorithm for asynchronous
shared-memory systems with an Eventual Strong failure detector.

Proof: Lemmata 5 and 6 together give us Termination. Agreement holds by
Lemma 7. From the algorithm, it is clear that a process can only propose a value
that is some process’s initial value. Thus Validity is also satisfied.]

Chandra and Toueg proved that in a message-passing asynchronous system,
there is no Consensus algorithm that uses an Eventual Strong failure detector
unless a majority of processes are correct [6]. The proof is based on a parti-
tion argument: Suppose that n/2 of the processes have initial value 0 and n/2
of them have initial value 1. Further suppose that in reality all processes are
correct. Initially, however, the failure detector is misbehaving (as is possible in
the case of the Eventual Strong failure detector), and each process in the first
group suspects each process in the second and vice-versa. Further, all messages
sent between the two groups are delayed. To each group, it appears as though
the processes in that group are correct and the processes in the other are all
faulty. Thus, Validity and Termination require that the processes of the first
group eventually decide 0, and those of the second group eventually decide 1. At
this point, the failure detector modules stop misbehaving and conform to the
requirement of the Eventual Strong failure detector (for example, by having each
process suspect no one), and all delayed messages reach their destinations. In
this way we have exhibited an execution that does not violate the assumptions
of the model (in particular, the assumptions regarding the failure detector and
the fact that messages are not lost), but which violates Agreement.

This sort of argument cannot be applied in the shared-memory model. The
critical point is that, whereas messages may be delayed and therefore hidden
for arbitrarily long, a write step cannot be hidden: Once taken, any process
that subsequently reads the register “knows” that the write has occurred. Algo-
rithm 2 takes advantage of this property of shared memory to achieve wait-free
Consensus with an Eventual Strong failure detector. Thus, unlike the message-
passing Consensus algorithm for Eventual Strong failure detectors of [6], our
shared-memory algorithm does not require a majority of correct processes.

3.3 Weaker Failure Detectors

Chandra and Toueg give an algorithm which emulates a Strong failure detector
from a Weak one, and an Eventual Strong failure detector from and Eventual
Weak one. (The same algorithm accomplishes both emulations.) This algorithm
was presented in [6] in the context of message-passing asynchronous systems,
but can be easily adapted to our shared-memory setting, as follows:

Fach process p maintains a shared register suspects,, which contains the
value returned by p’s failure detector module when it was last queried, and a

sequence number indicating how many times the module was queried. In ad-
dition, p maintains a local variable output,, which is the present value of the
local module of the failure detector that p is emulating. Process p periodically
queries its local failure detector module (of a Weak or Eventual Weak failure
detector), and writes the set of processes it obtained into suspects,. In ad-
dition, p periodically reads the suspects, register of every process ¢ (making
sure that each process’ register is read infinitely often). If the value of the se-
quence number of this register has changed since the last time p read it, p sets
output, := (output, U suspectsy) \ {p, ¢}.

It can be shown that the set of processes that are kept in the local variables
output, satisfy the properties of a Strong (Eventual Strong) failure detector, if
the given failure detector is Weak (Eventual Weak). In other words, this algo-
rithm emulates a Strong (or Eventual Strong) failure detector, given a Weak
(or Eventual Weak) one. By combining this emulation with Algorithm 1 or Al-
gorithm 2, we can obtain wait-free algorithms for Consensus in asynchronous
shared-memory systems using a Weak or Eventual Weak failure detector.

4 Negative Results

In this section, we present some lower bounds and impossibility results about
solving Consensus using failure detectors in asynchronous shared-memory sys-
tems.

4.1 Strong Failure Detectors

We give some negative results regarding Consensus algorithms that use a Strong
failure detector. These apply, a fortior:, to algorithms that use an Eventual
Strong failure detector.

Theorem 9. If only 1-writer-n-reader atomic registers are allowed, then there is
no watt-free Consensus algorithm for n processes using a Strong failure detector
with less than n such registers.

Proof: If there are less than n 1-writer-n-reader registers, then some process p
never writes into any register. Consider a run where process p is the only process
that is never suspected by other processes. Suppose that p has initial value 0 and
all other processes have initial values 1. First, process p runs alone until it decides
(this is possible as the algorithm is wait-free). By Validity, p decides 0. Then,
let the remaining processes execute; by Termination, they all eventually decide.
Since p never writes into any register, by Validity, all the remaining processes
must decide 1. This, however, violates Agreement. [|

The Termination condition of Consensus only requires every correct process
to eventually decide. Suppose we further require that every correct process must
eventually halt after it decides. Then, we have the following two impossibility
results.

Theorem 10. If the registers in the system can assume arbitrary (but valid)
wnitial values, then there is no halting Consensus algorithm using a Strong failure
detector, even when at most one process may crash.

Proof: Suppose, to the contrary, that such a protocol exists. Consider a run in
which a process p has initial value 1 and all other processes have initial values
0, and the registers in the system have arbitrary initial values. Also, process p
never suspects any other processes, but it is always suspected by other processes.
First, all processes but p run together until they decide and halt before p takes
a step (such an execution is possible as we assume the protocol can tolerate
one crash failure). By Termination and Validity, all processes but p must decide
0. Then, process p starts its execution and, by Termination and Agreement, it
must eventually decide 0. Let v, be the value of register r just before p starts
its execution, for each register r in the system.

Consider another run in which all processes have initial values 1 and each
register r has initial value v,. As above, process p never suspects any other
processes. In this run, however, process p first executes the algorithm alone.
Since the algorithm is deterministic and since the registers have values as if all
other processes had decided 0 and halted, process p must eventually decide 0
before other processes start their execution. This, however, violates Validity. B

The requirement that the Consensus algorithm be halting is important in
Theorem 10; without it the theorem does not hold. In the full paper we give a
non-halting Consensus algorithm that uses a Strong failure detector but does
not require shared memory to be initialised.

Theorem 9 gives a (tight) lower bound on the number of single-writer regis-
ters necessary for Consensus using a Strong failure detector. It seems possible
that the number of registers required could be reduced if we can use multi-writer
registers. Indeed, in the full paper, we show that we can solve n-process (halt-
ing) Consensus using a Strong (and even Weak) failure detector with just two
n-writer-n-reader registers. On the other hand, two multi-writer registers are
necessary, as the following theorem shows.

Theorem 11. There is no wait-free halting Consensus algorithm for two pro-
cesses using the Strong failure detector & that uses a single 2-writer-2-reader
atomic register.

The requirement that the algorithm is halting is necessary in Theorem 11:
There is a non-halting Consensus algorithm for two processes that uses a single
2-writer-2-reader atomic register.

4.2 The Weakest Failure Detector

Informally, a failure detector D* is the weakest for solving Consensus if, for
any failure detector D that can be used to solve Consensus, it is possible to
emulate D* using D. More precisely, for any failure detector D that can be
used to solve Consensus in an environment &, there exists an algorithm Tp_ p«

that transforms D to D* in &£ in the following sense. Consider any execution of
the system with a failure pattern F' € £. Each process p uses the information
provided by the failure detector D, together with an algorithm Cp that solves
Consensus using D, to maintain a local variable V), so that the following holds:
if H is the failure detector history defined by the local variables V,, (i.e., the
history so that H(p,t) is the value of V,, at time t), then H is in D*(F'). Since
we can emulate D* using D, any problem that can be solved using D* can also
be solved using D, and so D* is weaker than D. We write D »=¢ D* to denote
the fact that D can be used to emulate D* in £.

In [5], Chandra, Hadzilacos and Toueg show that the Eventual Weak failure
detector oWV is the weakest that can be used to solve Consensus in asynchronous
message-passing systems. we have shown that this result also holds for asyn-
chronous shared-memory systems:

Theorem 12. The Eventual Weak failure detector oW is the weakest failure de-
tector that can used to solve Consensus in asynchronous shared-memory systems.

The proof of this theorem follows closely that in [5]. Some technical difficulties
arise due to the fact that in shared-memory systems a write step of a process
cannot be “hidden” from other processes (in contrast, as we have remarked, in
message-passing systems, the sending of a message can be hidden for arbitrarily
long by delaying that message). This proof is quite long and is therefore omitted
from the extended abstract.

5 Conclusion

In Theorem 9 of Section 4, we show that if only l-writer-n-reader registers are
allowed, any wait-free Consensus algorithm for n processes that uses a Strong
failure detector must use at least n such registers. Since our algorithms only use
this number of registers, this result is tight. It is conceivable, however, that the
number of registers required can be reduced if multi-writer registers can be used.
We have some partial results regarding this issue, although we are far from a
complete answer. On the positive side, we can show that with a Strong (or Weak)
failure detector two n-writer-n-reader registers are sufficient (and necessary) for
solving n-process halting Consensus, for arbitrary n. On the negative side, we
can show that with an Eventual Strong (or Weak) failure detector, three 3-writer-
3-reader registers are necessary (and sufficient) for wait-free halting Consensus
among three processes. We do not know how this result generalises beyond the
special case of n = 3. Using the technique of Fich, Herlihy and Shavit [8], it
can be shown that any wait-free halting Consensus algorithm using an Eventual
Weak failure detector for n processes must use at least §2(\/n) shared n-writer-
n-reader registers. We do not know whether this lower bound is tight.

Another interesting question regarding the number of registers is whether
there is a trade-off between this resource and the degree of fault-tolerance of
the Consensus algorithm (measured as the number of crashes that it tolerates).
Our results on the number of registers required are for wait-free algorithms. It

is conceivable that the number of registers needed is a function of the number
of processes that can crash.

n

In addition to the number of shared registers, we may also be interested
the size of those registers. Our Consensus algorithm that uses an Eventual

Strong failure detector (Algorithm 2) requires registers of unbounded size. We
would like to determine whether this is necessary, or whether an algorithm can
be devised that uses registers of bounded size.

References

10.

11.

. Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt and Nir Shavit.

Atomic snapshots of shared memory. In Proceedings of the 9th Annual ACM Sym-
posium on Principles of Distributed Computing, pages 1-13, August 1990.

. Yehuda Afek, David S. Greenberg, Michael Merritt, and Gadi Taubenfeld. Comput-

ing with faulty shared memory. In Proceedings of the 11th Annual ACM Symposium
on Principles of Distributed Computing, pages 47-58, August 1992.

. James Aspnes and Maurice Herlihy. Fast randomized consensus using shared mem-

ory. Journal of Algorithms, 11:441-461, 1990.

. Michael Ben-Or. Another advantage of free choice: Completely asynchronous agree-

ment protocol. In Proceedings of the 2th ACM Symposium on Principles of Dis-
tributed Computing, pages 27-30, August 1983.

. Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure

detector for solving consensus. In Proceedings of the 11th ACM Symposium on Prin-
ciples of Distributed Computing, August 1992. Also technical report, Department
of Computer Science, Cornell University, 1993, Ithaca, NY 14853-7501.

. Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for asyn-

chronous systems. In Proceedings of the 10th ACM Symposium on Principles of
Distributed Computing, August 1991.

. Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the minimal synchronism

needed for distributed consensus. Journal of the ACM, 34(1):77-97, January 1987.

. Faith Fich, Maurice Herlihy, and Nir Shavit. On the space complexity of randomized

synchronization. In Proceedings of the 12th Annual ACM Symposium on Principles
of Distributed Computing, pages 241-249, August 1993.

. Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of dis-

tributed consensus with one faulty process. Journal of the Association for Comput-
ing Machinery, 32(2):374-382, April 1985.

Prasad Jayanti, Tushar Deepak Chandra, and Sam Toueg. Fault-tolerant wait-free
shared objects. In Proceedings of the 33rd Annual Symposium on Foundations of
Computer Science, 1992.

Michael C. Loui and Hosame H. Abu-Amara. Memory requirements for agreement
among unreliable asynchronous processes. In Advances in Computer Research, vol-
ume 4, pages 163-183. JAI Press Inc., 1987.

This article was processed using the IANTpX macro package with LLNCS style

