Computer and Network Security

Lecture 7 Public Key Cryptography

Facts about PK

- Euler's totient function
 - $\phi(n) = \#$ of positive integers ≤ n AND coprime with n
 - n prime \rightarrow ϕ (n) = n-1
- Lagrange's theorem (corollary)
 - $\text{ If } g \in Z_n^* \qquad \Rightarrow \qquad g^{\, \phi(n)} = 1 \text{ mod } n$
- Euclidean algorithm
 - Which is the inverse of x in Z_n ?
- Chinese reminder theorem

Outline

- Diffie-Hellman Key Exchange
- RSA Encryption
- Digital Signature
 - RSA
- Identification scheme
 - ZeroKnowledge

Public-key (asymmetric) Cryptography • Bob has a public/private key pair (pk_B, sk_B) – Examples: RSA, El Gamal Pk_B Ciphertext Decryption Algorithm Cleartext Cleartext

Diffie-Hellman key exchange

- Protocol to establish a secret key between two parties
- Appeared as
 - New Directions in Cryptography
 - Witfield Diffie and Martin E. Hellman
 - IEEE Transactions on Information Theory (1976)
- System parameters:
 - p large prime
 - g generator of $Z_p^*=\{1, ..., p-1\}$

Discrete Logarithm Problem (DLP)

- Z*_n = set of integers mod n, relatively prime to n
- p prime, Z*_p = {1, ..., p-1}, cyclic multiplicative group
 g generator of Z*_p
 - $Z_p^* = \{g^0 \mod p, g^1 \mod p, ..., g^{p-2} \mod p\}$
- Discrete exponentiation is easy
 - Given any x, compute $y = g^x \mod p$
- Discrete logarithm is hard
 - Given any y, find $x : y = g^x \mod p$
 - That if, find x=log_g(y) mod p

Example

- Discrete exponentiation in Z*₁₇
 - $-3^4 = 81 = 13 \mod 17$
- $3^4 = 13 \mod 17$
- Discrete Logarithm in Z*₁₇
 - $-3^{x} = 13 \mod 17$, solve for x
 - 4 is a solution
 - 4+16n, for any n, is a solution
 - ord(3) = 16 \rightarrow 3¹⁶ = 1 mod 17
 - $3^{4+16} = 13 * 1^n \equiv 13 \mod 17$
 - Infinite solutions

Algorithms to find DL

- Trial multiplications
- Baby-step giant-step
- Pollard's rho and lambda algorithms
- Pohlig-Hellman algorithm
- Index calculus algorithm
- Number field sieve
- Function field sieve

None of them runs in polynomial time!

Man-in-the-Middle Attack

PK Encryption Scheme

- Keypair
 - sk, pk ∈ K
- Plaintext (cleartext)
 - $-m \in M$
- Ciphertext
 - $-c \in C$
- Encryption algorithm
 - c = Encrypt(pk, m)
- Decryption algorithm
 - m = Decrypt(sk, c)

The RSA Cryptosystem

- A method for obtaining digital signatures and publickey cryptosystems
 - Ronald L. Rivest, Adi Shamir, Leonard Adleman
 - Communications of the ACM, 1978
- Current use
 - SSL/TLS: Certificates and key-exchange
 - Secure e-mail: PGP, Outlook, ...

The RSA trapodoor 1-to-1 function

```
    Parameters
```

- N=pq : N ≈1024 bits, p,q ≈512 bits

Public Key

- e : gcd(e,
$$\varphi(N)$$
) = 1
• $\varphi(N) = (p-1)(q-1)$

Secret key

$$- d : e^*d = 1 \mod \phi(N)$$

- Encryption of $m \in Z_N^*$
 - $-c = E_e(m) = m^e \mod N$
- Decryption of c ∈ Z^{*}_N

$$- m = D_d(c) = c^d \mod N$$

The RSA trapodoor 1-to-1 function

- Does it work?
 - $m = D_d(c) = c^d \mod N = (m^e)^d \mod N = \underline{m^{ed} \mod N} = \underline{m \mod N}$
 - if gcd(ed, φ (N)) = 1 \rightarrow ed = 1 mod φ (N)
 - $m^{ed} \mod N = m^{k^* \phi(N)+1} \mod N$ (Lagrange: $g^{\phi(N)} = 1 \mod N$)
 - $m^{k*\phi(N)+1} \mod N = m^{k*\phi(N)} m^1 \mod N = 1^k m^1 \mod N = m \mod N$
- Is it secure?
 - Given (N, e) and a c = m^e mod N, it is hard to efficiently compute m
 - Best strategy is to find factor of N (e.g., p, q)
 - Integer factorization seems not practical for large N
 - But there is not proof

Example

- p = 5, q = 7, n = 35, $\phi(35) = (p-1)(q-1) = 24$, e = 11, d = 11
- m = 2, $c = E_{11}(2) = 2^{11} \mod 35 = 18 \mod 35$
- c = 18, $m = D_{11}(18) = 6.426841007923e + 13 \mod 35 = 2$
- p = 17, q = 13, n = 221, $\phi(221) = (p-1)(q-1) = 192$, e = 5, d = 77
- m = 5, $c = E_5(5) = 5^5 \mod 221 = 31 \mod 221$
- c = 31, $m = D_{77}(31) = 6.83676142775442000196395599558e + 114 mod 221 = 5$

Textbook RSA is insecure

- Textbook RSA encryption:
 - public key: (N,e) Encrypt: $c = m^e \mod N$
 - private key: **d** Decrypt: $\mathbf{m} = \mathbf{c}^{d} \mod \mathbf{N}$

 $(m \in Z_N^*)$

- Completely insecure cryptosystem:
 - Does not satisfy basic definitions of security
 - Many attacks exist

RSA Encryption in practice

- OAEP+ (Shoup'01)
 - Widely used in web browsers

How to pick your public key

- Pick 2 primes, p and q
- Compute N = pq and $\phi(N) = (p-1)(q-1)$
- Choose a random e $(1 < e < \phi(n))$
 - $-\gcd(e, \phi(n)) = 1$
- Compute $d = e^{-1} \mod \phi(N)$
 - $ed = 1 \mod \phi(N)$
 - Extended Euclidean algorithm
- Public Key
 - -(e, N)
- Private Key
 - -(d,N)

Bob picks its public key

- Random p = 59, q = 67
 - -N = 3953
 - $\phi(N) = 58*66 = 3828$
- Random 1 < e < 3828
 - Let's try 2669. Will that work? gcd(2669, 3828) = 1
- Now find d, such that ed = 1 mod φ(n)
 - $d * 2669 = 1 \mod 3828$
 - $d exists \leftrightarrow gcd(d, 3828) = 1$
 - d = 1625
- $pk_B = (2669, 3953)$
- $sk_B = (1625, 3953)$

Message exchange

- Alice
 - $-pk_B = (2669, 3953)$
 - -m = 3128
 - $-E_{pk_{B}}(3128) = 3128^{2669} \mod 3953 = 3541$
- Bob
 - $sk_B = (1625, 3953)$
 - $-D_{pk_{R}}(3541) = 3541^{1625} \mod 3953 = 3128$

RSA – Security

- Suppose Eve sees c = me mod N
 - Can she recover m?
- It is strongly believed, but not proven, that Eve cannot efficiently revert c without knowing $\varphi(N)$
- It has been proven that finding $\varphi(N)$ is equivalent to factoring N
- It is strongly believed, but not proven, that factoring large numbers is difficult

RSA performance dilemma

- Greater security = Longer keys
- Encryption/Decryption time increases cubically with key size
- RSA has poor performance
 - Get worse as algorithms improve and security requirements increase
 - Never used for full communication
 - Used to encrypt a session key

RSA operations

- Finding prime numbers and testing primality
 - Agrawal, Kayal, Saxena (2002)
 - polynomial time
- Exponentiation
 - Square and multiply
- Factorization
 - Believed to be difficult (security is here)

Square and Multiply

- Suppose we want to compute 3⁴¹ mod 187
 - Can we do better 3 * 3 * 3 * ... * 3 mod 187?
- Compute squares
 - $-3^1 \equiv 3 \mod 187 \ 3^2 \equiv 9 \mod 187 \ 3^4 \equiv 81 \mod 187$
 - $-3^8 \equiv 16 \mod 187$ $3^{16} \equiv 69 \mod 187$ $3^{32} \equiv 86 \mod 187$
- Write 41 in binary
 - -101001 = 32 + 8 + 1.
- Finally, multiply the appropriate powers of two:
 - $-3^{41} \equiv 3^1 \cdot 3^8 \cdot 3^{32} \equiv 3 \cdot 16 \cdot 86 \equiv 14 \pmod{187}$
- At most 2 · log₂(N) multiplications

Factorization

- Brute-force
 - For d = 1, 2, 3, 4,...
 - Does d divide n?
 - -N = pq
 - If $p \le q$ \rightarrow $N \ge p^2$ \rightarrow $\sqrt{N} \ge p$
 - $-O(\sqrt{N})$
- Use structure of Z_n
 - Pollard's rho method
 - Quadratic sieve, Number Field Sieve (NFS)
 - Is there a better method out there?

Factoring

- Suppose N (663 bits)
 - $\begin{array}{lll} -& 2799783391122132787082946763872260162107044678695542853756000992932612\\ & 8400107609345671052955360856061822351910951365788637105954482006576775\\ & 098580557613579098734950144178863178946295187237869221823983 \end{array}$
 - What are p and q?
- RSA-200 challenge
 - broken 5/9/05
 - Jens Franke's team at the University of Bonn, Germany
 - Their prize was \$20,000 US
- p=3532461934402770121272604978198464368671197400197625023649303468 776121253679 423200058547956528088349
- q=7925869954478333033347085841480059687737975857364219960734330341 455767872818 152135381409304740185467

General Number Field Sieve

- Complexity $O\left(\exp\left(\left(\frac{64}{9}\log n\right)^{\frac{1}{3}}\left(\log\log n\right)^{\frac{2}{3}}\right)\right)$
- So a 663 bit number does not require 2⁶⁶³ work to factor.
 - Typically a 1024 bit value requires roughly 2⁸⁰ work to factor
- The U.S. Government uses N values as high as 15360 bits for TOP SECRET communications

Key length and complexity

 Bits of security are used to indicate the strength of a cryptographic system

< 40 bits
 56 bits
 54 bits
 56 bits
 Totally insecure, can be cracked on a PC
 Key length of DES, 1976 standard (now obsolete)
 Largest publicly cracked keys, by Distributed.net

70-80 bits Allegedly searchable by the NSA
128 bits Standard for AES, as of 2001

256 bits
 Required for US Government TOP SECRET material

 Typical RSA: 1024 bit length provides roughly 80 bits of security

Digital Signatures

- Digital equivalent of regular (paper-based) signature
 - Integrity
 - Authentication
 - Non-repudiation
 - Authorization

Application

- Digital Signatures
 - Alice computes signature σ message m
 - Uses her secret key
 - Forgery should not work
 - Anybody can verify (σ, m)
 - Using Alice's public key

Digital Signature Scheme

- Keypair
 - sk, pk ∈ K
- Plaintext (cleartext)
 - $-m \in M$
- Signature
 - $-\sigma \in S$
- Signing algorithm
 - $-\sigma = Sign(sk, m)$
- Verification algorithm
 - $-\{0,1\}$ = Verify(pk, σ , m)

RSA Signature scheme

- Parameters
 - N=pq : N≈1024 bits, p,q≈512 bits
- Public Key

$$-$$
 e : gcd(e, $\phi(N)$) = 1 $\phi(N)$ = (p-1)(q-1)

Secret key

 $- d : e^*d = 1 \mod \phi(N)$

- Signing of m ∈ Z*_N
 Sign(d, m) = m^d mod N
- Verification of $\sigma \in Z_N^*$
 - Verify(e, σ)
 - Checks if $m = \sigma^e \mod N$

Identification

- (sometimes) Interactive protocol
 - Two partiesProver
- Verifier
- Alice convinces Bob that she is indeed Alice
- Complete
 - Alice can convince Bob that she indeed is Alice
- - Anyone else can convince Bob to be Alice with small probability
- Zero-Knowledge
 - Informally, Alice leaks no information through the protocol

First attempt – Password scheme

- Complete and sound
- Non ZK
 - Alice reveals the password

Second attempt – PK based scheme

- Complete and sound
- Non ZK
 - Alice reveals cleartext corresponding to c

Fiat-Shamir Identification Scheme

- How To Prove Yourself: Practical Solutions to Identification and Signature Problems
 - Amos Fiat and Adi Shamir
 - CRYPTO 1986
- Based on RSA modulus N=pq
 - Factors themselves are not used in the protocol
 - More provers can share same N
 - As long as nobody know the factorization
 - Trusted center can generate it
 - Delete factors after computation

Fiat-Shamir Identification Scheme

- Setup
 - Secret key 1 < x < N gcd(x,N) = 1
 - Public key (y, N) $y = x^2 \mod N$
- Given (y, N), Alice convinces Bob
 - knowledge of x, such that, $y = x^2 \mod N$
 - that is, knowledge of a square root of y mod N
 - Without revealing x

Fiat-Shamir Identification Scheme N, x, y=x² mod N Pick r random w=r² mod N z = rx² mod N Z = wy² mod N ?

Fiat-Shamir Identification Scheme

- z² is from secret and challenge
- $\bullet \quad wy^c$ is from public key, witness and challenge
 - $-z^2 = (rx^c)^2 = r^2x^{2c} = wy^c$
- Protocol is repeated many times (e.g., 20, 30, log(N))
 - If Alice is successful in al runs, Bob concludes that he is talking to Alice

Security

- Clearly, if Alice knows x, then Bob is convinced of her identity
- If Alice does not know x, she can guess c
- After t rounds, prob. of success = 2^{-t}
- If Alice does not know x but she succeeds, then we can factor

Security

• If Alice does not know x but she succeeds

$$-z_0, z_1$$

 $-z_0^2 = w$
 $-z_1^2 = wy$
 $-z_1/z_0 = sqrt(y)$

- But computing square roots is assumed to be as hard as factoring
 - If Alice compute square roots we can factor

Zero-Knowledge

- FS Id scheme is ZK, i.e., it does not reveal information about x
- Proof
 - C = 0
 - Alice sends $w = r^2$ and z = r
 - Clearly no relation to x
 - C = 1
 - Alice sends $w = r^2$ and z = rx
 - rx is random
 - r is random
 - $gcd(x, N) = 1 (x can be any value in <math>Z_N^*$)
 - Assume that given (N, $y = x^2$, $w = r^2$, rx), Bob computes x
 - He could do the same with (N, y = x² mod N)
 - He can choose a random t = r1s mod N and compute

$$w^1 = t^2 y^{-1} = r_1^2 x^2 y^{-1} = r_1^2$$

Zero-Knowledge for Dummies (the cave)

- 1. Bob checks that door is locked and comes out to point 1 and looks away
- 2. Alice goes into the cave past point 2 (either right or left)
- 3. Bob looks into the cave from point 1
 - 1. Randomly picks right or left
 - 2. Shouts to Alice to come out from the picked direction
- 4. Alice moves to point 2
- 5.If Alice does not come out from the picked direction, Bob concludes Alice is a liar

Repeat n times