Computer and Network Security

Lecture 5 Hash Functions and Message Digest

Outline

- Hash Functions
- Basic properties
- Popular hash functions
- Applications

Scope

- Problem
 - Data integrity
 - Error in transmission
 - Malicious manipulation
- Solution
 - Error detection/correction codes
 - CRC
 - Hash functions

Properties

- $H: \{0,1\}^* \to \{0,1\}^n$
- Non-cryptographic hash functions
 - Arbitrary-length input
 - Fixed-length output
 - Efficient to compute
- Cryptographic hash functions
 - One-way
 - Strong Collision resistance
 - Weak Collision resistance

One-way

- Given x
 - Computation of y = f(x) is easy
- Given **y**
 - Computation of $x = f^{-1}(y)$ is hard
- Example -- DLP (Discrete Logarithm Problem)
 - p, prime; $Z_p^* = \{1,...,p-1\}$; $g \in Z_p^*$, generator $f(x) = g^x \mod p$

 - p = 17, $Z_p^* = \{1,...,16\}$; g = 3; $f(x) = 3^x \mod 17$
 - x = 6 $\rightarrow y = f(x) = 3^6 \mod 17 = 15$ y = 15 $\rightarrow x = f^{-1}(y) = ???$

Other properties

- Strong Collision resistance
 - It is hard to find a,b such that
 - a ≠ b
 - H(a) = H(b)
- Weak Collision resistance
 - Given a, it is hard to find b such that
 - a ≠ b
 - H(a) = H(b)

Security

- H: $\{0,1\}^* \rightarrow \{0,1\}^{64}$
- Given y = H(x)
 - How many trials for a collision?
- 2⁶⁴ possible outputs
 - $-2^{64}/2 = 2^{63}$?
 - Not really!

The Birthday paradox

- How many people are enough, so that the probability that two random people of them have the same birthday (month and day) is ≥ ½?
- Answer: 23
- Does it help attacking hash functions?

The Birthday paradox

- y = H(x)
 - -x = person
 - H() = Birthday()
 - $-y \in \{1,...,365\}$; let n be the size of the set
- How many people do we need to 'hash' to have a collision?
- Probability of having no collision
 - $P_0 = 1*(1-1/n)*(1-2/n)*...*(1-(k-1)/n)) \approx e^{k(1-k)/2n}$
- Probability of having at least one collision
 - $P_1 = 1 P_0$
 - Set P₁ to be at least 0.5 and solve for k
 - K ≈ 1.17 * SQRT(n)
 - k = 22.3 for n=365
- So what?

The Birthday paradox

The Birthday paradox

- Assume that |H(x)| = n bits
 - $-\sqrt{2}^n = 2^{\frac{n}{2}}$ trials are enough to find a collision with prob. ≥ 0.5
- How long should |H(x)| be?
 - Many input messages yield the same hash
 - E.g., 1024-bit message, 128-bit hash
 - On average, 2896 messages map into one hash
 - With n-bit hash, it takes about $2^{n/2}$ trials to find a collision with \geq 0.5 prob.
 - When n = 64, it takes 2^{32} trials to find a collision (not 2^{63})
 - Today, need at least n = 128, requiring about 2^{64} trials

Application

Password storage

- Eavesdropping?
- Stolen password file

Application

- Digital Signatures
 - Alice computes signature σ message m
 - Forgery should not work
 - Anybody can verify (σ, m)
 - Signature schemes only sign m ≈ 160-bits

Application

- Electronic paper submission
 - Strict deadline: 9:45pm CET, March 21st
 - Last minutes are hectic
 - Servers slow down
 - Attachment might be several GBs
 - Videos
 - Server cannot handle the load

Popular Hash Functions

	SHA-256	MD5 (defunct)	RIPEMD-160
Digest length	256 bits	128 bits	160 bits
Block size	512 bits	512 bits	512 bits
# of steps	80	64	160
Max msg size	2 ⁶⁴ -1 bits		

Hash Functions for Encryption

- (almost) One-time pad
 - $-b_1 = H(K_{AB} \mid \mid IV), ..., b_i = H(K_{AB} \mid \mid b_{i-1}), ...$
 - $c_1 = p_1 XOR b_1, ..., c_i = p_i XOR b_i, ...$

Hash Functions for Authentication

• Only requires hash computation

Hash Functions for Integrity

- Regular hash might be replace by any malicious party
- Requires HMAC
 - Prefix:
 - MAC = H(K_{AB} | m)
 - Allows concatenation with arbitrary message:

$$H(K_{AB} \mid m \mid m')$$

- Suffix:
 - MAC = H(m | K_{AB})
 - Collision in H() → Collision in HMAC
- HMAC:
 - H (K_{AB} | H (K_{AB} | m))

HMAC

- Main Idea: Use a MAC derived from any cryptographic hash function
 - Note that hash functions do not use a key, and therefore cannot serve directly as a MAC
- Motivations for HMAC:
 - Cryptographic hash functions execute faster in software than encryption algorithms such as DES
 - No need for the reverseability of encryption
 - No export restrictions from the US (was important in the past)
- Status: designated as mandatory for IP security
 - Also used in Transport Layer Security (TLS), which will replace SSL, and in SET