Computer and Network Security

Lecture 3
Symmetric – Asymmetric
Cryptography

Administrative

- Slides are online
 - http://lsd.ls.fi.upm.es/lsd/education
- Questions?
 - csoriente@fi.upm.es

Outline

- Conventional Cryptography
- Public-key Cryptography

Cryptosystems (at least) 5 ingredients

- Key (secret)
 - $-k \in K$
- Plaintext (cleartext)
 - Message **m** ∈ *M*
- Ciphertext
 - Message c ∈ C
- Encryption
 - Algorithm $E: K \times M \rightarrow C$
- Decryption
 - Algorithm $D: K \times C \rightarrow M$

Security should only depend on the secrecy of the keys!!!

(some) Cryptoattacks

- Ciphertext-only attack
 - Eve only sees ciphertexts
- Known plaintext attack
 - Eve sees pairs [plaintext-ciphertext]
- Chosen plaintext attack
 - Eve picks plaintexts to be encrypted
- Chosen ciphertext attack
 - Eve picks ciphertexts to be decrypted
- Bruteforce attack
 - Try all possible keys

Types of attainable security

- Perfect, unconditional or information-theoretic:
 - security is evident free of any assumptions
- Provable:
 - security can be shown to be based on some common (often unproven) assumptions
 - Discrete logarithm problem
 - Given p prime and $Z_{D}^* = \{1,...,p-1\}$
 - Find x s.t. $a^x = b \mod p$
- Ad hoc:
 - the security seems good...

Conventional (symmetric) Cryptography

- Alice and Bob share a key k_{AB} which they somehow agree upon (how?)
 - Examples: Substitution, Vernam OTP, DES, AES

Notation

• Cleartext / Message m

• Ciphertext c

• Secret key k

Secret key of Ak_A

• Encryption of m using k_A $c = E_{k_A}(m)$

• Decryption of c using k_A $m = D_{k_A}(c)$

Applications of Conventional Cryptography

- Secure transmission (confidentiality)
 - Communication over insecure channels
- Secure storage (one party?)
 - char *crypt(const char *key, const char *salt);
- Strong authentication
 - proving knowledge of a secret without revealing it
- Integrity check
 - fixed-length checksum for message via secret key cryptography

Challenge-Response Authentication

Integrity check

Conventional Cryptography

- Advantages
 - High data throughput
 - Relatively short key size
 - Primitives to construct various cryptographic mechanisms
- Disadvantages
 - Key must remain secret at both ends
 - Key must be distributed securely and efficiently
 - Relatively short key lifetime

Public-key (asymmetric) Cryptography

- Bob has a public/private key pair (pk_B, sk_B)
 - Examples: RSA, El Gamal

Notation

- Cleartext / Message m
- Ciphertext С
- Secret key sk
 - Secret key of A sk_A
- Public key pk
 - Public key of A pk_A
- $c = E_{pk_A}(m)$ $m = D_{sk_A}(c)$ • Encryption of m using k_A
- Decryption of c using k_A

Applications of Public-key Cryptography

- Secure transmission (confidentiality)
 - Alice encrypts using pk_R
 - Bob decrypts using sk_R
- Secure Storage
 - encrypt with own public key
 - later decrypt with own private key
- Digital Signatures
 - authentication, integrity, non-repudiation, ...

Public-key Cryptography

- Advantages
 - only the private key must be kept secret
 - relatively long life time of the key
 - more security services
- Disadvantages
 - low data throughput
 - much larger key sizes
 - distribution/revocation of public keys
 - security "provable"
 - based on conjectured hardness of certain computational problems

Comparison

- Services
 - Conventional
 - encryption and some data integrity applications
 - Public key
 - encryption, signatures, ...
- Key sizes
 - Conventional
 - E.g., 64 bits for DES64 or 128 bits for AES
 - Public-key
 - 1024 bits for RSA
- Most attacks on "good" conventional cryptosystems are exhaustive key search (brute force)
- Public key cryptosystems are subject to "short-cut" attacks (e.g., factoring large numbers in RSA)