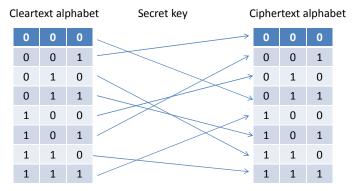
Computer and Network Security

Lecture 4 Modern Block Ciphers

Administrative

- Slides have been published!
 - http://lsd.ls.fi.upm.es/lsd/education
- Contact
 - csoriente@fi.upm.es


Outline

- Block-ciphers
 - Feistel Network
- DES
 - Attacks
 - Variants
- AES
 - History and mode of operation

Block Ciphers

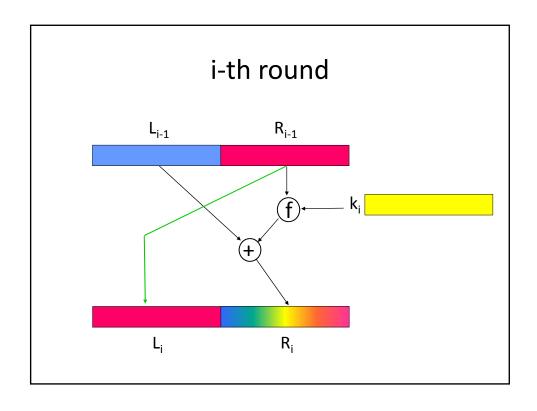
- Encrypt/Decrypt data in blocks of N bits
 - E.g., N=64 or N=128
- See each block as a character
 - Alphabet of size 2^N
- Convert a block of plaintext to a block of ciphertext
 - 2^N! such mappings
- A secret key indicates which mapping to use

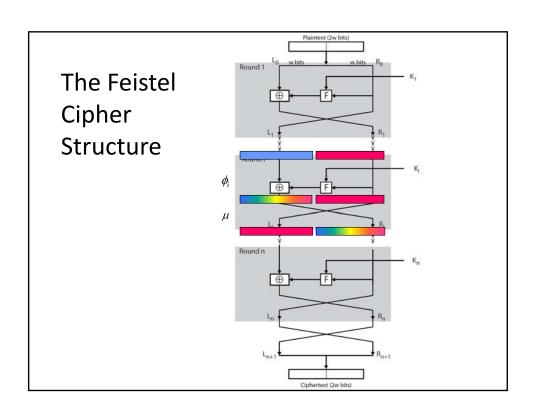
Example – N = 3

- Secret key = map cleartext ↔ ciphertext
- In general, with P alphabet symbols there are P! mappings
 - $-2^3 = 9$ symbols $\Rightarrow 2^3! = 9! = 362 880$ mappings

Ideal Block Cipher

- Use any of the 2^N! mappings
 - The key space would be extremely large
- But this would require a key of log₂(2^N!) bits
- If N = 64
 - $-\log_2(2^N!) \approx 10^{11} \text{ GB}$
- Infeasible!

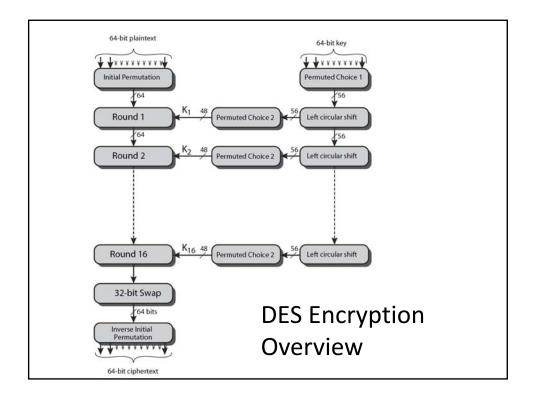

Practical Block Ciphers


- Modern block ciphers use a key of K bits to specify a random subset of 2^K mappings.
- If the selection of the 2^K mappings is **random**, the resulting cipher will be a good approximation of the **ideal** block cipher.
- Shannon's Confusion and difusion principle
 - A cipher should hide local parts in a language from the attacker
 - A cipher should mix around the diferent parts of the plaintext so that nothing is left in its original place.
- Horst Feistel's Cipher Structure (1973)

7

The Feistel Network

- Input
 - data block + key
- Algorithm
 - Repeat for r rounds
 - Compute a round key
 - Partition data block in two halves L and R
 - R does not change
 - L goes through an operation that depends on R and the round key
 - Swap L and R



Fiestel Cipher Structure – Specs

- Block size
 - larger block sizes mean greater security
- Key Size
 - larger key size means greater security
- Number of rounds
 - multiple rounds offer increasing security
- Round key generation algorithm
 - greater complexity will lead to greater difficulty of cryptanalysis

DES: The Data Encryption Standard

- Most widely used block cipher in the world
- Adopted by NIST in 1977
- Based on the Feistel cipher structure with 16 rounds of processing
- Block = 64 bits
- Key = 56 bits
- Specific to DES
 - Design of the f() function
 - Round keys derivation

Attacks on DES

- Brute-force key search
 - Needs only two plaintext-ciphertext samples
 - $O(2^{55})$
- Differential cryptanalysis
 - Look for correlation between I/O
 - Possible to find a key with 2⁴⁷ plaintext-ciphertext samples
 - Known-plaintext attack
- Liner cryptanalysis:
 - Look for correlations in bits of plaintext and ciphertext
 - Possible to find a key with 2⁴³ plaintext-ciphertext samples
 - Known-plaintext attack

DES Cracker

- DES Cracker (1998)
 - A DES key search machine
 - contains 1536 chips
 - Cost: \$250,000
 - could search 88 billion keys per second
 - won RSA Laboratory's "DES Challenge II-2"
 - 56 hours to find a key
- DES is feeling its age... a more secure cipher is needed

15

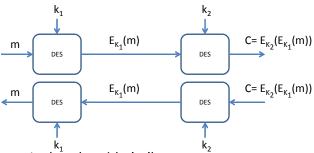
Multiple Encryption with DES

- In 2001, NIST published the Advanced Encryption Standard (AES) to replace DES
- But users in commerce and finance are not ready to give up on DES
- Temporary solution
 - Encrypt multiple times using multiple keys
 - 2DES
 - 3DES

2DES

• Encryption

$$-c=\mathsf{E}_{\mathsf{k}_2}(\mathsf{E}_{\mathsf{K}_1}(\mathsf{m}))$$


• Decryption

$$- m = D_{k_1}(D_{k_2}(c))$$

- Key length: 56 x 2 = 112 bits
- Does it mean O(2111) steps to brute-force?
 - Not really!

17

Meet-in-the-Middle Attack on 2DES

- Given tow pairs (m, c) and (m', c')
 - Encrypt m with all 2^{56} possible keys for k_1
 - $-\,$ Decrypt c with all 2 56 possible keys for $\rm k_2$
 - If $E_{k_1}(m) = D_{k_2}(c)$, try these keys on (m', c')
 - If works, (K1', K2') = (K1, K2) with high probability.
 - Takes O(256) steps
 - Attacking DES takes O(2⁵⁵) steps

3DES with two keys

Encryption

$$- c = E_{k_1}(E_{k_2}(E_{K_1}(m)))$$

In practice

$$- c = E_{k_1}(D_{k_2}(E_{K_1}(m)))$$

- Also called EDE (Encryption-Decryption-Encryption)
- Backward compatibility

- If
$$k_1=k_2$$
 → 3DES = DES

- No practical attacks up to date
- Standard ANSI X9.17 and ISO 8732

19

3DES with three keys

• Encryption

$$- c = E_{k_3}(E_{k_2}(E_{K_1}(m)))$$

Backward compatibility

$$-$$
 If k₁=k₃ $→$ 3DES w/ 3 keys = 3DES w/ 2 keys

- If
$$k_1$$
= k_2 = k_3 → 3DES w/3 keys = DES

• Used by some apps

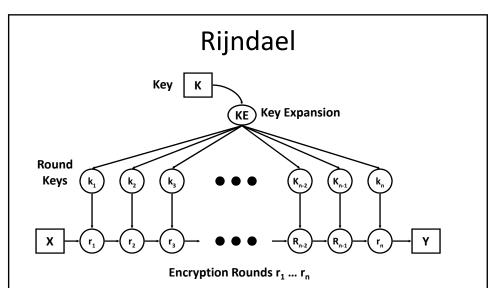
Problems with block ciphers

- What if m is larger than a block size?
- Permutation / Substitution attack is trivial
- Several "mode" of operation

DES modes

- Block modes
 - Electronic code-book (ECB) $m_i = E_k(p_i)$
 - Local Error, parallel enc/dec
 - Same cleartext = Same ciphertext, perm/sub attack
 - Chained block cipher (CBC) $c_i = E_k(c_{i-1} \text{ XOR } m_i)$
 - Need IV, transmission error affects two blocks
- Stream modes
 - Output feedback (OFB) $v_i = E_k(v_{i-1})$ $c_i = m_i XOR v_i$
 - Local error, pre-computation
 - Cipher feedback (CFB) $c_i = m_i XOR E_k(C_{i-1})$
 - Error propagation

Advanced Encryption Standard


- National Institute of Science and Technology (NIST) regulates standardization in the US
- DES is an aging standard that no longer addresses today's needs for strong encryption
- Triple-DES: Endorsed by NIST as a "de facto" standard
- AES: Advanced Encryption Standard
 - Finalized in 2001
 - Goal is to define the Federal Information Processing Standard (FIPS) by selecting a new encryption algorithm suitable for encrypting government documents
 - Candidate algorithms must be:
 - Symmetric-key ciphers supporting 128, 192, and 256 bit keys
 - Royalty-Free
 - Unclassified (i.e. public domain)
 - Available for worldwide export

History

- AES Round-3 Finalist Algorithms:
 - -MARS
 - Candidate offering from IBM
 - -RC6
 - By Ron Rivest of MIT & RSA Labs, creator of the widely used RC4/RC5 algorithm and "R" in RSA
 - —Twofish
 - From Counterpane Internet Security, Inc.
 - -Serpent
 - by Ross Anderson, Eli Biham and Lars Knudsen
 - Rijndael
 - by Joan Daemen and Vincent Rijmen (KUL, Belgium)

The winner: Rijndael

- Joan Daemen and Vincent Rijmen
 - Proton World International
 - Katholieke Universiteit Leuven
- Key length
 - 128, 192, and 256
- Block length
 - 128, 192, and 256
 - AES only allows 128 bits
- Speed improvement over DES in both hw and sw implementations
 - 8.8 Mbytes/sec on a 200MHz Pentium Pro

- Key is expanded to a set of n round keys
- Input block X undergoes n rounds of operations (each operation is based on value of the n-th round key), until it reaches a final round.
- Strength of algorithm relies on the fact that it's very difficult to obtain intermediate result (or state) of round n from round n+1 without the round key.

Rijndael

• Secure

- Immune to
 - Linear and differential cryptanalysis
 - Known-key and related-key attacks
 - Square attack
 - Interpolation attacks
 - Weak-keys
- No key-recovery attacks faster than exhaustive search

• Future:

- Rijndael is an extremely fast, state-of-the-art, highly secure algorithm
- Amenable to efficient implementation in both hw and sw
- Requires no special instructions to obtain good performance on any computing platform
- However, Triple-DES, still highly secure and supported by NIST, is expected to be common for the foreseeable future