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Abstract

TransLib is an Ada 95 object oriented framework to program fault-tolerant applications,

more concretely, it allows to program transactional distributed applications. Transactions are

one of the most widely used fault-tolerance mechanisms. They provide data consistency in

the presence of failures and concurrent activities.

One of the novelties of TransLib is that it uncouples concurrency control and recovery

code from the code of data objects used by transactions. This feature enables to use regular

objects in a transactional setting and vice versa what greatly improves reusability. TransLib

provides commutativity-based locking, and di�erent kinds of recovery. It also allows users to

de�ne their own recovery and concurrency control algorithms.

Transactions and exceptions have been integrated in TransLib, that is, backward and

forward recovery. In this integration, exceptions that cross transaction boundaries cause

transaction abortion and transaction abortions are noti�ed as exceptions.

TransLib implements a new transactional model, Group Transactions, which integrates

two existing fault tolerance techniques: transactions and process groups. In this transactional

model transactions can be multitask and/or multi-process.

A set of design patterns documents TransLib. Each one describes a component of TransLib

architecture, such as recovery and concurrency control mechanisms.

In this paper we describe the overall architecture of TransLib, as well as the design patterns

that document it. Additionally, some aspects of the Ada 95 implementation are also discussed.

Keywords: Transactions, fault-tolerant architectures, backward and forward recovery, object

oriented design patterns, distributed systems.

1 Introduction

Transactions are a mechanism to provide data consistency in the presence of concurrent activities

and system failures. Transaction systems were �rst developed for banking applications, but today

�This research has been partially funded by the Spanish National Research Council CICYT under grant TIC98-

1032-C03-01 and by the Madrid Regional Research Council CAM under grant 07T/0012/1998.
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they are widely used in many areas to build fault-tolerant applications [1] such as communications,

�nance, 
ight reservations systems, electronic commerce, manufacturing, ...

Transactions have four properties, known as ACID properties, which are useful for constructing

fault-tolerant applications:

1. Atomicity guarantees that the e�ect of a transaction is all or nothing. If a transaction does

not end successfully it is aborted and its e�ects are undone.

2. Consistency ensures a correct transformation of the state. It is responsibility of the appli-

cation programmer to guarantee this property.

3. Isolation (serializability) ensures that concurrent transactions will not interfere. That is that

the e�ect of concurrent transactions will be equivalent to some serial execution.

4. Durability ensures that once a transaction has �nished successfully (committed) its e�ects

will remain. In other words, its state changes will survive failures.

Concurrency control mechanisms have been proposed to deal with isolation. Locking is one of

the most well known concurrency control mechanisms. Recovery mechanisms preserve atomicity

and durability in the presence of failures. Logging is generally used to support these mechanisms.

Transactions involving data located in di�erent nodes in a network are called distributed trans-

actions. Distributed atomic commit protocols are used to ensure the atomicity of a distributed

transaction.

Transactions can be nested, that is, a transaction can be started within another transaction.

Top level transactions are those not enclosed within other transactions. Nested transactions [2]

or subtransactions are useful for two reasons. First, they allow additional concurrency within

a transaction (particularly in distributed systems) by running concurrently nested independent

subtransactions. Second, the failure of a subtransaction does not force the parent transaction to

fail, providing in this manner a kind of �rewall against failures. However, the concurrency allowed

inside a transaction is very limited, as concurrent subtransactions cannot cooperate due to the

isolation property.

In this paper we present TransLib, an Ada 95 object oriented framework to build distributed

transactional applications. TransLib is composed of a set of design patterns that describes its

architecture and, at the same time, documents how to use TransLib. The two main design patterns

of TransLib are TransLock for concurrency control and TransRecovery for recovery.

TransLib provides commutativity-based concurrency control [3] which allows more concurrency

than the traditional read/write locking, as well as several prede�ned recovery mechanisms. One

of the contributions of TransLib is to allow the rede�nition of recovery and concurrency control

mechanisms. This feature allows customizing the framework to the application needs. Recovery

and concurrency control mechanisms in traditional systems are usually wired, and cannot be

changed with the exception of Arjuna [4].

Another contribution of TransLib is that there is no distinction between transactional objects

and non-transactional ones. This feature allows object reuse in di�erent setups (maybe non-

transactional), and it also makes possible to change the concurrency control and recovery policies

without modifying transactional objects, that is, they can be varied independently.

TransLib integrates backward and forward recovery, more speci�cally, transactions and excep-

tions. In this integration [5], unhandled exceptions propagated outside of a transaction cause the

transaction abortion and transaction abortions are noti�ed as exceptions. That is, a transaction

that ends exceptionally is aborted. The enclosing scope of an aborted transaction is noti�ed by

means of the exception that caused its abortion.

TransLib implements a new transactional model, Group Transactions , that integrates the

nested transactions and process groups paradigms. In this model, transactions can be multi-task

and/or multi-process and a transactional server can be a group of processes. Nested transactions

are also supported, as they are a particular case of Group Transactions .
As transactions in Group Transactions can be composed of several tasks and/or processes,

exceptions can be raised concurrently within a transaction, so exception resolution is used. A
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novelty of the exception resolution provided by TransLib is that it is structured hierarchically,

applying local resolution among the local exceptions, and then applying distributed resolution

among distributed ones.

TransLib restricts the use of some Ada 95 statements. In particular it restricts the use of task

abortions and asynchronous transfer of control. Those statements can prevent the execution of

TransLib code necessary for the correct behaviour of the system. For instance, the task abort can

prevent the abortion of a transaction.

There is some work related to the implementation of fault-tolerance mechanisms in Ada 95,

like atomic actions [6, 7] and recovery blocks [8]. Some of the most important transactional

systems are Argus [9], Camelot/Avalon [10], and Arjuna [4, 11]. However, none of them provide

the 
exibility and adaptability of TransLib. There has also been work on transactions with Ada.

In particular [12] presents an ad-hoc Ada implementation of transactions for air-tra�c control

systems. A project with similar goals than ours in an earlier stage can be found in [13].

The paper is structured as follows. Transactional concurrency control and recovery support

are presented in Sections 2 and 3 respectively. Section 4 introduces the Group Transactions
model. Section 5 describes the exception model used in TransLib. We have included a subsection

discussing the use of Ada 95 advanced features at the end of Sections 2, 3 and 5. Finally, we

present a comparison with related work and our conclusions.

2 TransLock : A Design Pattern for Transactional Concur-

rency

Concurrency control mechanisms guarantee the isolation property of transactions, that is, the �nal

e�ect of executing a set of concurrent transactions is as if they were executed sequentially in some

order. This property is also called serializability.

Concurrency control mechanisms are classi�ed as optimistic or pessimistic. Optimistic mecha-

nisms allow transactions to run even if they con
ict. At commitment time, if there were con
icting

accesses, con
icting transactions are aborted. On the other hand, pessimistic mechanisms delay

the execution of con
icting transactions. This yields to another problem, circular waits or dead-

locks that must be broken aborting one of the transactions in the wait cycle. As optimistic

mechanisms can yield to many abortions, they are not widely used.

The most used pessimistic concurrency control method is locking. Whenever a transaction

accesses a datum, it has to request a lock in the appropriate mode. If the requested lock con
icts

with other lock held by a di�erent transaction, the requester transaction will be delayed until the

end of the holder transaction.

There are several schemes of locking, the most well-known are read/write locking, commuta-

tivity based locking and recoverability. Read/write locking was the �rst proposed scheme, and it

is the less concurrent of the three. It provides exclusive writes and concurrent reads. The other

two schemes are based on user-de�ned locks to provide more concurrency. In commutativity-

based locking [3] two operations con
ict only if they do not commute. Read/write locking is a

special case of commutativity-based locking. Recoverability [14] provides yet even more concur-

rency, as two operations only con
ict, if the second depends on the result of the �rst. However,

recoverability increases dramatically the probability of deadlocks. This is why we have chosen

commutativity-based locking as prede�ned concurrency mechanism in TransLib.
To illustrate commutativity-based locking, let's study an example: user-de�ned concurrency

control for the set abstract data type (ADT). A set provides operations to insert and remove items,

and also an operation to test set membership. Insertions commute between themselves. The same

applies for removals. Test membership commutes with insertions and removals, if the test refers

to an element di�erent from the one of the update operation. Insertions and removals commute

when they have di�erent arguments. The compatibility rules for the set ADT are summarized in

Fig. 1.

If we compare the compatibility table just de�ned with the one of read/write locks shown in
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Insert(n2) Remove(n2) IsIn(n2)

Insert (n1) Yes n1 6= n2 n1 6= n2

Remove(n1) n1 6= n2 Yes n1 6= n2

IsIn(n1) n1 6= n2 n1 6= n2 Yes

Figure 1: Commutativity table for the set ADT

Read Write

Read Yes No

Write No No

Figure 2: Commutativity table of read/write locks

Fig. 2, it can be observed that more concurrency is achieved with the former locking policy. In

particular, using read/write locking, any insertion or removal would be incompatible with any

other operation, and membership tests would be just compatible among themselves.

TransLock is a design pattern for transactional concurrency control that provides user de�ned

locks based on operation commutativity. Read/write locking is also provided as a prede�ned

subclass. Participant classes in TransLock are the class hierarchies Lock and LockManager. To

add a new kind of lock, a new concrete subclass of Lock must be de�ned, de�ning a new lock

compatibility function (IsCompatible in Fig. 3). The LockManager class provided by TransLib
is general in the sense that it can deal with any user de�ned commutative lock.

2.1 User-De�ned Locks: The Lock Hierarchy

The Lock abstract class provides support for commutative locking. Its methods represent the

common information to all user de�ned commutative locks, as well as a minimum information

needed for recovery management. That is, the recovery manager will need to know whether a

lock implies the modi�cation of the data object or not in order to take the appropriate recovery

actions. On the other hand, the lock manager will need to know if two locks are compatible when

they are requested by concurrent transactions.

Each subclass of the abstract Lock class implements a locking policy and it must provide

constructors (possibly parameterized as in the example of Fig. 1) for each kind of lock, a lock

compatibility de�nition by means of the IsCompatiblemethod, as well as the IsUpdate function.

Instances of concrete Lock subclasses are locks and they will be created with the corresponding

constructor.

The ReadWriteLock class, shown in Figure 3, implements read/write locks, so there are just

two constructors: ReadLock and WriteLock. One for each kind of lock (e.g. a read lock will be

created by calling ReadLock). The IsCompatible method will return true only when both the

lock held and the lock requested are read locks. The IsUpdate method returns true for a write

lock, and false otherwise.

Adding user de�ned concurrency control to the set ADT presented above is done writing a new

concrete Lock subclass, SetLock. In this case, it is necessary to parameterize locks to be able do

decide whether two operations commute. The constructors are:

Insert(Item) -> SetLock

Remove(Item) -> SetLock

IsIn(Item) -> SetLock

The IsCompatible operation will follow the compatibility table shown in Fig. 1. The IsUpdate

method will return true for the two �rst kinds of locks, and false for the last one.

Our Lock class hierarchy is quite similar to the one of Arjuna [15], especially in what respects

the Lock class interface. Despite this similarity, there are some important di�erences between
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Lock

ReadWriteLock

IsCompatible

IsUpdate

(Lock) -> Bool

-> Bool

ReadLock->ReadWriteLock

WriteLock->ReadWriteLock

IsCompatible(ReadWriteLock) -> Bool

IsUpdate -> Bool

UserDefinedConstructor ->UserDefinedLock

...

IsCompatible(UserDefinedLock) -> Bool

IsUpdate -> Bool

UserDefinedLock

Figure 3: Lock Class Hierarchy

our approach and the one of Arjuna. First of all, in Arjuna lock acquisition is done explicitly in

every object method. In our approach locks are acquired automatically by the system and thus

object code does not include any concurrency control code. Secondly, Arjuna uses physical logging

(logging is introduced in Section 3) what excludes the possibility of concurrent updates, and thus

it allows less concurrency than in our approach.

2.2 The class LockManager

This class encapsulates the lock manager. The lock manager guarantees transaction isolation (i.e.

serializability) by deciding the order in which the operations on data are executed. It currently

provides commutativity-based locking and deals with any user-de�ned lock (instances of Lock

subclasses). In TransLib every data object has an associated LockManager that controls its access.

The lock manager deals with both long and short term concurrency control. Locks provide

long term concurrency control and are used to provide transaction isolation, that is, they provide

logical consistency in presence of concurrent transactions. On the other hand, latches [16] provide

short term concurrency control and are used to guarantee data physical consistency (by means of

read/write mutual exclusion) in presence of compatible and concurrent write/write or read/write

operations. An additional reason for latches in TransLib has to do with the fact that transactions

can be multithreaded and locks requested from threads of the same transaction do not con
ict, so

they also need the latches.

The SetLockAndMutex method request the lock in the appropriate mode, once the lock is

granted, the mutual exclusion is requested and when it is granted control is returned. Due to their

di�erent duration, they are freed at di�erent times, and two di�erent methods are needed. The

FreeMutexmethod frees mutual exclusion (latch). However, freeing locks is a little more involved.

Transaction abortion and top-level transaction commitment free all transaction locks. However,

subtransaction commitment implies the propagation of its locks to the parent transaction. The

lock manager is noti�ed of transaction ends by means of the Commit and Abort methods in order

to release or propagate locks. Both methods know if the caller is running a top-level transaction

or a subtransaction and they take the appropriate actions.

The lock manager blocks transactions that have requested con
ictive locks on the object it

protects. When a lock is released or propagated, the lock manager unblocks those transactions

that can continue their execution.

Another activity of the LockManager is the initiation of deadlock detection and keeping enough

information to detect them. Detection is only started when a transaction blocks due to the request

of a con
ictive lock. Deadlock detection for nested transactions is more complex than for 
at ones.

This is due to the commit dependencies between parent and children transactions. In TransLib we
have extended the algorithm proposed in [17] to adapt it to Group Transactions . This extension
was needed because the original algorithm is aimed to single-threaded transactions while Group
Transactions can be multithreaded/multi-process.

In order to provide further 
exibility, an abstract LockManager class has been de�ned. The

commutativity-based lock manager described above is a concrete subclass of LockManager, Commu-
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LockManager

SetLockAndMutex

FreeMutex

Commit

Abort

SetLockAndMutex

FreeMutex

Commit

Abort

CommutativeLockManager

Figure 4: LockManager Class Hierarchy

tativeLockManager. Thus, it is possible to add other locking mechanisms such as recoverability,

encapsulating them into concrete LockManager subclasses.

2.3 Ada 95 Features for Transactional Concurrency Control

The class Lock has been implemented as an abstract tagged type with two abstract methods,

which has been useful to implement polymorphic lists of locks. In particular, the lock manager

keeps two of these lists: one with the held locks and another with the con
ictive locks requested.

Each concrete LockManager contains a protected object, ProtectedLockManager, that man-

ages short and long term concurrency control of the associated data object. It also behaves as a

monitor that manages concurrent accesses to its internal data structures (e.g. the list of granted

locks). A concrete LockManager just propagates calls to its protected object.

The interface of the protected object used in the implementation of the lock manager regarding

to lock requests, propagations, and releases is the following:

protected type ProtectedLockManager is

entry SetLockAndMutex(lock to set : in out LockPtr );

entry FreeMutex;

entry T Commit(tid : in out TransactionIdentifier );

entry T Abort(tid : in out TransactionIdentifier );

private

-- blocked on an incompatible lock

entry WaitingForLock(lock to set : in out LockPtr);

-- read locks obtained waiting for object operation mutex

entry WaitingForReading(lock to set : in out LockPtr);

-- write lock obtained waiting for object operation mutex

entry WaitingForWriting(lock to set : in out LockPtr);

locks held : LockList;

...

end ProtectedLockManager;

When a lock cannot be granted the current call to the SetLockAndMutex entry is requeued into

the WaitingForLock entry. However, when a lock is granted, the requester can be delayed until

the mutual exclusion is free. When this happens, the call is requeued into WaitingForReading

or WaitingForWriting depending on whether it is waiting for a reading or writing mutex. These

three entries are only used by the lock manager to delay requests, so they are kept private. The

protected object also encapsulates the list of granted locks, locks held, and the corresponding

transaction identi�ers (tids). To check whether a lock can be granted the lock manager traverses
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the list of granted locks and compares each granted lock to the requested lock by means of the

IsCompatible method of the Lock class.

3 TransRecovery : Transactional Recovery

Recovery algorithms provide atomicity and durability. A log is an append-only linear structure

that maintains redundant information to guarantee data recoverability. Transaction initiation

and �nalization events, together with persistent data updates are logged. Updates can be logged

as either the before image of the data (the value before the update) or the after image of the

data (the value after the update), or both. Lost committed updates on persistent data should be

redone after a crash, whilst uncommitted updates should be undone after a crash or a transaction

abortion.

The most extended method of logging is physical logging that logs data images. The main

drawback of this method is that the log grows excessively with big objects. Another variant of

this method stores image di�erences, but they can still be too big when the updates involve many

�elds of the objects.

An alternative method, more space e�cient, is logical logging. In this method the update oper-

ations (operation name and parameters) that have modi�ed the objects are logged. An important

advantage of this method is that to redo or undo the operation the state of the object does not

need to be physically identical, but just logically equivalent. Logical logging still needs object

before images, so it must be used in combination with physical logging.

In order to reduce the number of disk accesses, transactional systems use a cache that keeps a

copy of recently used data in volatile memory. When a transaction is going to access a datum, if

it is not already in memory, the cache manager brings it from disk to memory. As all data cannot

be kept in volatile memory, sometimes it is necessary to free cache slots and as a result objects

are propagated to disk.

Whatever replacement strategy the cache manager uses, there are times when cache actions are

restricted or forced by the recovery manager. [18] classi�es recovery strategies as Undo/No Redo,

No Undo/Redo and Undo/Redo depending on the restrictions imposed by the recovery manager to

the cache manager. Undo means that dirty objects (i.e. objects with uncommitted updates) can

be propagated to disk at any time. Then, if the transaction aborts the uncommitted values written

to disk must be undone. Redo means that transaction updates will not be necessarily propagated

at commitment time. So, if there is a crash, there will be committed values not re
ected in disk,

thus the updates must be redone during recovery. The most 
exible method is Undo/Redo as

the cache manager can both replace a dirty object at any time and delay the propagation of a

committed update. But it is also more complex than the other strategies.

Most transactional systems provide a �xed recovery policy because they are oriented towards

databases and their main goal is the e�ciency under a database access pro�le (i.e. large collections

of homogenous data). One of the exceptions is Arjuna [11, 4] as it provides some 
exibility to the

programmer to modify concurrency control. However, as Arjuna is based on physical logging the

admissible concurrency is constrained, as this forbids concurrent update operations.

TransLib is based in a design pattern, TransRecovery , that allows using di�erent recovery

strategies. An important contribution of TransLib is that it uncouples concurrency control from

recovery, so they can be modi�ed independently, thus improving 
exibility and reuse. Another

contribution is that recovery and concurrency control code do not appear in object operations,

so they can be extended and reused in (and from) other contexts (e.g. any ADT can be used

both in transactional and non-transactional contexts). This contrasts with existing systems where

concurrency control and/or recovery code is embedded in the implementation of object operations.

The goals of TransRecovery are:

� To uncouple cache management policy from the recovery and concurrency controls mecha-

nisms used.

� To uncouple object code from the recovery and concurrency control algorithms chosen.
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Transaction

Begin

Commit

Abort

Begin

Commit

Abort

NestedTransaction

Figure 5: Transaction Class Hierarchy

� To allow and provide support for both physical and logical logging.

The participant classes in TransRecovery are:

� Transaction. It keeps track of all the information necessary to commit or abort a transac-

tion.

� RecoveryManager. It encapsulates the recovery strategy.

� CacheManager. It encapsulates the cache replacement policy.

� Log encapsulates the log object.

� MemoryObject. It is the gate to the real object and related volatile information.

� Operation. It encapsulates a data object operation call.

� AtomicCall. It encapsulates the relationship between recovery and concurrency control.

� Proxy objects transform calls into Operation instances and use an AtomicCall object to

make the recovery and concurrency control processing associated with the call.

3.1 Transactions

A transaction object is used to start and end a transaction. A transaction is started by calling the

Begin method. If the transaction ends successfully, transactional code will commit it by calling

the Commit method, otherwise it will call the Abort method. All these three methods will notify

the transaction status (initiated, committed or aborted) to the recovery manager.

TransLib implements the nested transaction model and thus transactions can be nested by

starting new transactions in dynamically nested scopes. A transaction object keeps references to

all accessed objects, as well as the recovery and cache managers. It also keeps references to all its

subtransactions (local or distributed). It must be noticed that when a transaction is distributed

among a set of nodes, there will be a Transaction object in each of the nodes. Figure 5 summarizes

the Transaction class methods.

3.2 The Recovery Manager

There is a recovery manager per node that it is in charge of logging redundant information to

guarantee atomicity and durability of local transactions.

Transaction objects will notify it about transaction begin, commitment and abortion by calling

the Begin, Commit (it makes the transactions updates durable) and Abort (it undoes the transac-

tion) methods. Each Operation object has an associated recovery processing, so it can be later

redone and/or undone. So, it is necessary to notify the recovery manager both before calling the

operation (e.g. to log the before image of the object) and just after calling it (e.g. to log the after
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RecoveryManager

Begin

Restart

PreOp

PostOp

Commit

Abort

RedoRecoveryManagerUndoRecoveryManager

Restart

PreOp

PostOp

Commit

Abort

Restart

PreOp

PostOp

Commit

Abort

Restart

PreOp

PostOp

Commit

Abort

UndoRedoRecoveryManager

Figure 6: RecoveryManager Class Hierarchy

image of the object). For this reason, the RecoveryManager class provides the PreOp (recovery

prologue) and PostOp (recovery epilogue) methods. These two operations allow modifying the re-

covery without a�ecting the rest of the system. The Restart method is in charge of the recovery

process of persistent data after a crash. It implies to read and, possibly, modify the log. The

recovery manager keeps in its state references to the local log object and cache manager, as well

as to all the active transactions.

In order to admit di�erent recovery managers, an abstract RecoveryManager class has been

de�ned from where concrete recovery managers inherit as shown in Fig. 6. TransLib provides as

prede�ned recovery strategies Undo/Redo, Undo/NoRedo and NoUndo/Redo.

3.3 The Cache Manager

The cache keeps copies of persistent data on volatile memory and it is used to decrease the

number of disk accesses. As all persistent data cannot be kept in volatile memory, the cache

manager sometimes needs to replace some data items for new ones, propagating the replaced data

items to disk.

Additionally, to implement NoRedo schemes it is necessary a method to propagate all the

objects modi�ed by a particular transaction during its commitment. To cover these needs the

CacheManager provides the RecoveryManagerwith the Flush and FlushAllmethods. The Flush

method propagates all the objects modi�ed by a particular transaction, and then unpins all the

objects accessed by the transaction. After the unpinning of an object it can be replaced by other

objects. FlushAll acts similarly but with all the objects in the cache.

The MemoryObject class is used to prevent accessing the cache in each object access. This

class encapsulates the information that the cache manager keeps about every object, and thus,

the cache manager becomes just a table of MemoryObjects. The NewMemoryObject method of

the CacheManager class is used to create new instances of the MemoryObject class. Each time an

object is going to be loaded or discarded, the corresponding memory object must notify the cache

manager so it can apply the replacement policy (before a new object is loaded) and update its

information by means of the ApplyReplacementPolicy method.

Like the previous managers there is a root abstract class, CacheManager, that will be rede�ned

for each concrete cache manager yielding to the hierarchy shown in Fig. 7. Currently, the least

recently used replacement policy is provided by TransLib.

3.4 Cache objects: the MemoryObject class

Instances of this class act as gates to data objects, thus, each instance encapsulates the access to

a data object. An instance of this class contains the object disk address and a reference to it when

it is in memory. A MemoryObject brings the data object to memory (if it is not already present)

when a transaction is going to access it. A MemoryObject instance also keeps the locks kept on

9



CacheManager

Flush

FlushAll

NewMemoryObject

ApplyReplacementPolicy

LRUCacheManager

ApplyReplacementPolicy ApplyReplacementPolicy

UserDefinedCacheManager

Figure 7: CacheManager Class Hierarchy

that object (i.e. a reference to its lock manager) and other information about the object that is

not recorded on disk.

For instance, when versioning [9] (a variant of the Redo strategy for nested transactions) is

used, the memory object keeps a stack of object before images (one per active subtransaction) to

be able to recover the object state in case of a subtransaction abortion. This information is not

written to disk because after a crash uncommitted subtransactions will be aborted.

Independently of the replacement policy used by the cache manager, on certain occasions some

objects must not be propagated to disk. For instance, during the execution of an operation on an

object, the object should not be propagated, otherwise inconsistent data would be propagated to

disk. Another situation where objects should not be propagated is when NoUndo/Redo recovery

is used. In this kind of recovery, dirty objects (objects re
ecting uncommitted updates) should not

be propagated to disk until commitment, so they must be retained in memory until this time. This

is the motivation of the Pin and UnPin methods. The recovery manager will use these methods

to inform the cache manager that the propagation of a particular object must be delayed. While

an object is pinned the cache manager cannot propagate it to disk. When a transaction aborts,

the Discard method of each modi�ed object is called to discard all the transaction updates and

free the associated cache slots. The Propagate method forces object propagation to disk. There

are also methods to �nd out whether an object is currently in memory (IsPresent), whether it

is dirty (IsDirty) and whether it is pinned (IsPinned).

3.5 Atomic Operations: The Operation class

An instance of Operation encapsulates a call to an object operation (i.e. an operation made by

a transaction on a data object). This class enables logical logging, as operations are objects they

can now be logged. The transformation of operation calls into objects allows a uniform treatment

of the concurrency control and recovery processing associated with each operation (this is further

explained in next section).

The UnDo and Do methods provide support for logical logging, together with the Input and

Output stream methods1 provided by Ada 95. The Do method executes an operation interacting

properly with the RecoveryManager and the LockManager. The UnDo method is used to undo the

e�ect of an operation. This method is needed for logical logging, to undo the e�ect of an aborted

transaction.

In order to reduce the impact of changing the locking scheme on objects, the kind of lock

chosen for an operation is encapsulated in the GetKindOfLock method. This method returns the

kind of lock associated with an operation. Thus, only this method is rede�ned when a new locking

scheme is written. The recovery manager also needs to know whether an operation will update an

object or not. This information can be obtained by calling the IsUpdate method. Finally, each

1They correspond to the GetState and SetState of the Memento [19] design pattern.
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operation object keeps the arguments of the call, and possibly part of the object state2 before the

call is made, so the operation can be undone.

3.6 The AtomicCall Class

A key feature of TransRecovery is the independence of data objects code from recovery and

concurrency control. The AtomicCall class encapsulates the concurrency control and recovery

processing in its AtomicDo method. In the current implementation of TransLib (for locking-based

concurrency control) AtomicDo executes the following actions:

1. Concurrency control prologue. Calls SetLockAndMutex of the associated LockManager pass-

ing as argument the Operation to be executed.

2. Recovery prologue. Calls PreOp of the local RecoveryManager to execute the recovery pro-

logue (it will depend on the concrete policy it implements).

3. Object operation call. Calls the Do method of the Operation object that calls to the real

object.

4. Recovery epilogue. Calls PostOp of the local RecoveryManager to execute the epilogue

de�ned by it (again, it will depend on the concrete recovery policy implemented).

5. Concurrency control epilogue. Calls FreeMutex of the associated LockManager to free the

object mutual exclusion.

3.7 The Proxy Class

Object operation calls require to do some mechanical activities, such as Operation object creation,

use of an AtomicCall object to make the call, and so on. In order to simplify transactional

code, objects will be accessed by means of a proxy [19] that will encapsulate these mechanical

activities. A proxy provides the same interface as the real object, and its methods just create

the corresponding Operation instance and use an AtomicCall object to execute the operation

atomically. Currently, the programmer of the object must write the proxy. This is one of the

disadvantages of using a library instead of a language. We plan to implement a proxy generator

to free the programmer from this mechanical task.

3.8 Interaction between the components of TransRecovery

The relationships among the objects involved in an object operation call within a transaction

can be seen in Fig. 8. Each Transaction object keeps references to the local RecoveryManager

and CacheManager. Additionally, it keeps a list of all the objects (more exactly the associated

MemoryObjects) accessed by the transaction. The RecoveryManager references the CacheManager

and the log, and it also keeps a list of active transactions in that node. A proxy object keeps a

reference to its MemoryObject, so it can propagate calls to the real object. Instances of AtomicCall

only need to reference the local RecoveryManager.

The CacheManager is just a table of MemoryObjects. Each MemoryObject encapsulates the

real object and its associated LockManager.

The complete interaction corresponding to a transactional object operation call is shown in

Fig. 9.

2An operation that writes the contents of an object �eld will keep the previous value of �eld to be able to undo

the operation.
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Figure 8: Object diagram of TransRecovery

3.9 Transactional Recovery and Ada 95

Streams have been one of the most useful features of Ada 95 for recovery. They have been used for

both physical and logical logging. Ada 95 provides default 
attening and un
attening operations

for any user-de�ned type what saves a lot of mechanical work to the programmer. The standard

stream interface for direct access �les has been used to access the log, thus log records are 
attened

(un
attened) by the Input and (Output) operation. A most welcome feature was the reuse of these

operations for any kind of stream. Log records can contain either object images or operations.

With physical logging data objects are logged, whilst in logical logging Operation objects are

logged.

Mixin-inheritance has made possible to provide generic class extensions and thus improve fur-

ther reuse along TransLib. This feature has been especially useful to automate the stub generation.

We have not found any need for multiple inheritance. Package hierarchies has helped to structure

TransLib functionality. Generic child packages have helped to automate many activities such as

the server main loops.

Limited types have helped to keep the consistency of class instances, but we have missed the

possibility of rede�ning the assignment operator as in C++. Controlled types have been useful on

many occasions, but sometimes the impossibility of �nding out which event has �red the execution

of finalize has prevented its use. The same conclusion has been drawn in other works like [20].

Protected objects have been widely used to protect objects from concurrent accesses, for in-

stance the cache, the recovery manager and memory objects. In general, concurrency support has

made TransLib highly portable, thus not depending on speci�c operating system support.

The systems programming annex [21, 22] has played an important role to simplify TransLib
interface. It has helped to free the programmer from managing tids on many occasions. This annex

allows task state extension and its manipulation. The state of tasks belonging to a transaction has

been extended. As a task may start nested transactions, its state has been extended with a stack

that contains the active transactions being executed by that task. The operations that modify

the state are the ones that start and end transactions. An excerpt of the interface of the package

that deals with task state is the following:

package TransactionalTaskState is

no transactions : exception;

type TaskAttribute is tagged limited private;

type TaskAttributePtr is access all TaskAttribute'class;

function CurrentTID return TransactionIdentifier;
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Figure 9: Interaction Diagram of an Atomic Call

function AmIRunningTransactions return Boolean;

procedure T Begin;

procedure T Begin Finger(finger kind : Finger Kind Type;

tid : TransactionIdentifier );

procedure T End;

procedure T Abort(reason : Exception Occurrence Access );

...

end TransactionalTaskState;

The operation CurrentTID is provided to obtain the tid of the transaction the task is currently

executing (the one on the top of the stack). This operation allows knowing on behalf of which

transaction an object operation is being executed. This operation has been useful for concurrency

control management where the lock manager needs to know which transaction is requesting a lock.

The lock manager can �nd out this information by calling the CurrentTID procedure. Tasks can

check whether they are running transactions by calling the operation AmIRunningTransactions

(this operation is usually called internally by TransLib).
To further simplify the use of Transaction objects, operations to start and end transactions

have been added to this package. Thus, a new (sub)transaction is started by just calling T Begin.

T Begin creates a Transaction object and stores it in the task state. A transaction is committed

with T End and aborted with T Abort. Both operations remove the transaction from the task

state. This means that the programmer has also been freed from the management of Transaction

objects, and (s)he just uses the transaction start and end operations almost as language primitives.

A task can join an ongoing transaction by calling T Begin Finger (a �nger is a transaction thread).

As can be seen T Begin does not return the tid, and termination operations (i.e. T End and

T Abort) do not need tids as arguments, nor it is necessary for a task to notify its tid in each

transaction operation (that is, each data object access). An additional bene�t of this approach is

that TransLib can ensure that transactional objects are only accessed within a transaction (just

by calling to AmIRunningTransactions). When TransLib �nds out that a transaction operation

is being executed outside of a transaction it raises the no transactions exception. The tid
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management remains thus hidden in the code of transaction management operations (provided by

TransLib) in all the cases except in the T Begin Finger operation.

The need for the tid in the T Begin Finger operation it is due to the impossibility of identifying

the parent task (i.e. its task identi�er) of a particular task in Ada 95. The lack of this feature

prevented us from hiding tid management during transaction thread creation. If this feature would

have been available, transactions child tasks could be created without providing them the tid of

the transaction they belong to, as they could have obtained the parent task identi�er internally

and use it to access its extended state and to �nd out the transaction tid.

4 Group Transactions

Process groups and the group communication model [23], in particular Causally and Totally Or-

dered Communication (CATOCS) [24] have also been proposed as an adequate way to build

reliable distributed applications [25]. A group provides a common interface to a distributed server

composed of a set processes. Clients call the group by multicasting the request to all the group

members. The group helps to abstract the client from the fact that there is more than one process

involved in the service. Causal and total ordering ensures that all the messages sent to a group

are delivered in the same order to all the group members, preserving its causal order. This kind of

communication is used in a variety of applications like management of replicated data, observation

of a distributed system, �nancial systems, air-tra�c control, multimedia systems, mobile comput-

ing environments and teleconferencing. A group composed of replicated distributed processes can

tolerate hardware failures. The Isis toolkit [26] provides a collection of libraries to manage process

groups that communicate using CATOCS primitives.

According to [27, 28, 29] a current important topic of research is the integration of the group

communication and transaction models. [27] integrates these models. In this integration all the

operations of a transaction are packed in unique service. The client multicasts the call to the group

server and all the members of the group service atomically the call. However, this approach only

deals with the isolation property of transactions and it does not take into account recoverability.

The relationship between multicast and distributed commit protocols is discussed in [29], where

they propose a protocol, DT-multicast, that can be used to implement both protocols.

Our opinion is that both models are complementary. We have developed a new transaction

model, Group Transactions , that integrates both approaches. We have extended a group oriented

fault-tolerant distributed language, Drago [30], with transactional mechanisms in a new version

of the language called Transactional Drago [31]. TransLib has also been used to provide run-time

support for Transactional Drago. TransLib uses as communication layer, the group communica-

tion library GroupIO [32]. This library provides reliable multicast. Group Transactions provide

replicated and cooperative transactional groups. Transactional replicated groups improve the

availability of transactional servers, by replicating them and their associated data. Transactional

cooperative groups reduce the latency of their services by distributing the work among the group

members.

One of the main features of Group Transactions is that it allows several 
ows of execution

(concurrency) within a transaction. This intra-transactional concurrency allows decreasing the

latency of transactions. There are two kinds of intra-transactional concurrency:

1. Multithreaded transactions. A transaction can have several threads, that is, several concur-

rent tasks can act on behalf of a transaction. This allows taking advantage of multiprocessor

and multiprogramming capabilities.

2. Multi-process transactions. Requests to a cooperative group will be provided by all the

members of the group. A group call is executed as a single multi-process (distributed)

subtransaction of the client transaction. Due to all the members of a group participate in

the same transaction, they will be able to cooperate using intragroup communication or by

interacting with other groups.
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We have called �ngers the 
ows of execution of a transaction, concurrent (tasks) or distributed

(processes). Fingers of the same transaction are called sibling �ngers. A �nger can initiate a

subtransaction at anytime; that subtransaction will be atomic with respect to its sibling �ngers.

A transaction can commit only when all its �ngers have �nished successfully.

Group Transactions are serialized in the traditional way. The �nal e�ect of the concurrent

execution of two transactions must be the same as if they were executed sequentially in some

order; that is, as if all the �ngers of the transaction serialized in �rst place were executed before

all the �ngers of the transaction serialized in second place.

Client/server interaction in Group Transactions is based on multithreaded rendezvous [33].

This interaction mechanism allows to build transactional servers with conversational interfaces

[34] based on Ada rendezvous. A design pattern, MultithreadedRendezvous , has been proposed to

implement it in [35]. Its main advantage is that it simpli�es both, the code of the server, and

the enforcement of the client-server protocol. When a client calls to a server group, the call is

multicast to all group members. With MultithreadedRendezvous the interaction with a server is

based in rendezvous, however servers do not deal with calls from di�erent transactions in the same


ow of execution. When a client calls for the �rst time to a server, a server thread (in each group

member) is created to service all the calls from this client. A server thread accepts calls from a

client like an Ada task, and thus clients interact with servers by means of rendezvous. This is a

natural extension of Ada rendezvous.

Replication is traditionally used to provide highly available data. In our model, replicated

groups not only provide highly available data, but also highly available transactions, as we allow

replicating both clients and servers. A transaction can be initiated in a replicated group (i.e.

clients can be replicated). The failure of a replica does not abort that transaction. Replicated

groups can also act as servers, providing available services in spite of node failures.

A replica is composed of a scheduler and a set of server threads (one for each client transaction)

that execute the same code. To guarantee replica determinism, it has been necessary to restrict

the Ada 95 constructs that can be used in the code of server threads. The server thread code must

be deterministic (and thus sequential) what excludes the use of asynchronous transfer of control,

delay statements, and any other construct that could compromise determinism. Additionally, to

guarantee the determinism of the replica as a whole it is necessary to use a deterministic scheduler.

The scheduler ensures that only a transaction is executing at a given time and that context changes

take place deterministically. Only when the active transaction blocks, the control is transferred

again to the scheduler.

5 TransLib Exception Model

TransLib exception model [5] is novel in that it integrates backward recovery and forward recovery.

In our approach forward recovery is used to cope with anticipated errors, that is, errors predicted

by the programmer for which (s)he has written an exception handler to obtain a consistent state. If

the application state cannot be transformed into a consistent one or the error has not been foreseen,

then backward recovery is automatically used to restore the state to a previous consistent one by

aborting the enclosing transaction. In addition, we use exceptions to notify transaction abortions

to the enclosing scope. In this way, transactions act as �rewalls con�ning damage produced by

unhandled errors, and exceptions are used as noti�cation mechanism.

The Ada exception model is based on the termination model. In this model, when an exception

is raised, the current scope is abandoned. If there is an exception handler for the raised exception

that is associated with the scope where the exception has been raised, control is transferred to

it and execution follows just after the terminated scope. If the exception is not handled, it is

propagated to the dynamic enclosing scope. If the exception is not handled in that scope, it is

propagated again. An unhandled exception in the main program causes program termination with

a run-time error, and an unhandled exception in a task provokes the task termination, and the

exception is lost.

TransLib deals with multithreaded and/or multi-process (distributed) transactions that can
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raise exceptions concurrently. In this case exception resolution is needed. Exception resolution

[36, 37] is used to choose an exception that represents all the exceptions that have been con-

currently raised. TransLib provides a default resolution scheme that it is applied when multiple

�ngers of a transaction raise exceptions. This default resolution scheme propagates the prede�ned

exception several exceptions. It must be noticed that in Ada no exception resolution is applied,

and exceptions that cause task termination are just lost. Programmers can de�ne their own reso-

lution scheme in order to provide more information about the source of the transaction abortion

than the prede�ned exception several exceptions does.

The task that starts a transaction is called root �nger. The server threads created in a group

as a consequence of a call from a transaction are termed primary �ngers. Fingers created by

a primary �nger are called secondary �ngers. Based on this distinction TransLib provides two

levels of exception resolution: local and distributed. Local resolution is used to solve concurrent

exceptions among a primary �nger and its secondary �ngers (see Fig. 10). Thus, this resolution

will resolve more related exceptions (those local to a server thread). Distributed resolution is

used to solve concurrent exceptions among the root and its primary �ngers (see Fig. 10). Local

resolution is always applied before distributed resolution. Thus, we create a two-level hierarchical
exception resolution based on the �nger hierarchy. This approach is more coherent than a global

exception resolution at transactional level, which would have to solve totally unrelated concurrent

exceptions.

Figure 10: Hierarchical Exception Resolution

Replicated groups behave as a single member group, thus all the replicas will raise the same

exception, so exception resolution does not apply.

5.1 Exceptions in Ada 95 and TransLib

Ada exceptions have been essential to provide forward recovery, but they have also been very useful

to implement the backward recovery provided by transactions. The package Ada.Exceptions

has been extremely helpful to manage exceptions as data, especially exception occurrences and

operations to reraise them. Exception occurrences have allowed capturing exception information

what has been useful in two di�erent scenarios. First of all, they have been used to reraise an

exception automatically in the code of the Abort primitive, and thus freeing the programmer

from this work. And second, they have also been used to 
atten an exception raised in a group

member during remote interaction, and propagate it to the rest of the group members and the

client. Blocks have also provided an essential support to create the necessary exception scopes

(used as transaction scopes) for local subtransactions.

6 Related Work

We have already mentioned that there are some languages like Argus [9] and Avalon [10] that im-

plement the nested transaction model. However, library support is necessary to write transactional
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applications with standard languages.

One of the main features of Avalon is that it provides hybrid atomicity as concurrency control

mechanism. This mechanism provides more concurrency than commutativity-based locking, the

concurrency control used in TransLib. However, their approach presents two disadvantages: �rst

of all, although hybrid atomicity provides more concurrency, it also increases the probability of

deadlocks (in fact, it is possible to create a deadlock with a single object), and secondly, the

object code must take care of both concurrency control and recovery. In TransLib we have chosen

commutativity-based because of its simplicity, it is a declarative approach, and because it has

allowed us to remove the concurrency control code from object code.

Arjuna [4, 11] is an object oriented library implementing the nested transaction model. TransLib
is similar to Arjuna in that it provides an Ada 95 object oriented library for building transac-

tional applications. Although it is possible in Arjuna to customize concurrency control, this

customization is very limited due to the fact Arjuna only allows physical logging what eliminates

the possibility of concurrent updates. TransLib is novel in the 
exibility it provides to change

recovery and concurrency control mechanisms, and its integration of exceptions and transactions.

Furthermore, it implements a more general transactional model Group Transactions being the

nested transaction model a particular case of it.

Argus [9] is the only system to our knowledge that also provides exceptions and transactions.

However, they do not really integrate both mechanisms what originates several problems. First of

all, a transaction can end exceptionally (and possibly leaving an inconsistent state) and commit.

Secondly, it is also possible for a transaction to end successfully and abort (i.e. without raising

any exception notifying the abortion), what could be interpreted by the caller as a transaction

commitment when the transaction has aborted and thus undone. For these reasons, we �nd

our model more coherent as it identi�es successful end (i.e. when no exception is raised) with

commitment and exceptional end with abortion.

There has been several works on the implementation of software fault-tolerance mechanisms

in Ada 95. [6, 7] discuss how to implement atomic actions in Ada 95. Atomic actions di�er

from transactions in that they do not support persistent data, and both proposals only address

non-distributed implementations. TransLib is far more general as it implements distributed trans-

actions and it can also be used to implement atomic actions.

[8] suggests an Ada 95 implementation of distributed recovery blocks. The main di�erence

with the previously mentioned papers is that they do not deal with concurrent participants, but

on the other hand they deal with distribution. They also do not deal with persistent data.

7 Conclusions

We have presented TransLib an Ada 95 object oriented framework for building distributed trans-

actional systems. TransLib is documented as a set of object oriented design patterns. The main

TransLib features can be summarized as:

� Transactional concurrency control and recovery can be rede�ned by the user. This 
exibility

allows customizing TransLib to the application needs.

� Code of objects used by transactions does not include synchronization neither recovery code,

that is, it is independent from the concurrency control and recovery mechanisms used. Thus,

regular objects can be reused in transactional applications, and vice versa.

� A novel integration of transactions and exceptions. Transactions that �nish successfully are

committed. Transactions that end exceptionally are aborted, that is, exceptions that cross

transactional boundaries cause transaction abortions. Additionally, transaction abortions

are noti�ed as exceptions.

� TransLib implements the Group Transactions model that integrates the transaction and

group communication paradigms.
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� It provides commutativity-based locking which provides more concurrency than read/write

locking.

� TransLib implements Redo, Undo and Redo/Undo recovery mechanisms.
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