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Distributed versioning

e Each transaction declares the accessed tables and
the kind of operation (read/write) before

execution.
e Each table has a version number.

* The scheduler assings table versions atomically
(one transaction at a time).

— |f two transactions conflict, one will have larger
version numbers.

— Versions are created when a transaction completes its
last access to that table.



Distributed versioning

* No version number is assigned to single
operation queries (read only). They are
forwarded to one replica. It executes after all
conflicting transactions complete.

e Other transactions: operations at each replica
are executed in version number order. This
guarantees that all replicas execute conflicting
transactions in the same total order. 1-copy-
serializability.



Distributed versioning

 The scheduler sends writes to all replicas. It
waits for the first response to reply the client.

* Reads are sent to one replica.

* |t maintains for each replica the status of each
write operation and the current version
number. It sends a read operation that follows
a write to a replica that has completed the
previous write.
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Distributed versioning

begin
write a
write b
write c
end

1 2 3 4 5 6
al,b0,cO
al,bl,cl

1 2 3 4

TO: a0,b0,cO
T1: al,bl,cl
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Distributed versioning.
Implementation

* Three kinds of processes: scheduler (one),
sequencer (one) and database proxy (one per
replica).

* Transaction start: sequencer assigns version
numbers to each accessed table and returns
the info to the scheduler.

* The sequencer keeps two values: next-for-
read and next-for-write. It returns the
corresponding value.



Distributed versioning.
Implementation
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Distributed versioning.
Implementation

e These two counters are incremented when
there is a conflicting operation.

e Next-for-write is incremented when there is
write and next-for-read is set to next-for-

write.

* After a sequence number is assighed for a
read operation next-for-write is incremented.

operation WWTIYWTYTTrWw
next for read 012244 4 4
next for write 0122346567
version assigned 012 3 44 47

7
7

Errors ?



Distributed versioning.
Implementation

The DB proxy keeps version numbers.

A write query is executed at a replica only when the version
numbers of each table at the DB match the version numbers of the
query.

A read query is executed when the version numbers are greater
than or equal to the version numbers of the query.

Writes are blocked at the replica and reads by the scheduler.

Commit/aborts are tagged with version number. It is sent to all
replicas. When the tx completes at the DB, the proxy increments
the version number of the tables.

Early version releases: Last-use notation to increment the table
version.

operation WWZIXWZIXTIXTIrw
version assigned 0 1 2 3 4 4 4 7
version produced 1 2 3 4 5 6 7 8



Distributed versioning.Performance
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Distributed versioning.Performance

Throughput (Wips)
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Database engines

Level O: lazy update anywhere

Level 1: Writes are totally ordered. Reads maybe inconsistent.
Level 2: Writes are totally ordered. Reads up to x seconds
stale, a client reads his/her writes.
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