
“Distributed Versioning: Consistent Replication for
Scaling Back—end Databases of Dynamic Content

Web Sites”

 Cristiana Amza, Alan L. Cox and Willy Zwaenepoel.

Proceedings of the ACM/IFIP/Usenix Middleware Conference,
June 2003

Distributed Versioning

Nuevas tendencias en sistemas distribuidos 2

Distributed Versioning

Nuevas tendencias en sistemas distribuidos 3

Distributed versioning

• Each transaction declares the accessed tables and
the kind of operation (read/write) before
execution.

• Each table has a version number.

• The scheduler assings table versions atomically
(one transaction at a time).
– If two transactions conflict, one will have larger

version numbers.

– Versions are created when a transaction completes its
last access to that table.

Nuevas tendencias en sistemas distribuidos 4

Distributed versioning

• No version number is assigned to single
operation queries (read only). They are
forwarded to one replica. It executes after all
conflicting transactions complete.

• Other transactions: operations at each replica
are executed in version number order. This
guarantees that all replicas execute conflicting
transactions in the same total order. 1-copy-
serializability.

Nuevas tendencias en sistemas distribuidos 5

Distributed versioning

• The scheduler sends writes to all replicas. It
waits for the first response to reply the client.

• Reads are sent to one replica.

• It maintains for each replica the status of each
write operation and the current version
number. It sends a read operation that follows
a write to a replica that has completed the
previous write.

Nuevas tendencias en sistemas distribuidos 6

Distributed versioning

Nuevas tendencias en sistemas distribuidos 7

Distributed versioning.
Implementation

• Three kinds of processes: scheduler (one),
sequencer (one) and database proxy (one per
replica).

• Transaction start: sequencer assigns version
numbers to each accessed table and returns
the info to the scheduler.

• The sequencer keeps two values: next-for-
read and next-for-write. It returns the
corresponding value.

Nuevas tendencias en sistemas distribuidos 8

Distributed versioning.
Implementation

Nuevas tendencias en sistemas distribuidos 9

Distributed versioning.
Implementation

• These two counters are incremented when
there is a conflicting operation.

• Next-for-write is incremented when there is
write and next-for-read is set to next-for-
write.

• After a sequence number is assigned for a
read operation next-for-write is incremented.

Errors ?
Nuevas tendencias en sistemas distribuidos 10

Distributed versioning.
Implementation

• The DB proxy keeps version numbers.
• A write query is executed at a replica only when the version

numbers of each table at the DB match the version numbers of the
query.

• A read query is executed when the version numbers are greater
than or equal to the version numbers of the query.

• Writes are blocked at the replica and reads by the scheduler.
• Commit/aborts are tagged with version number. It is sent to all

replicas. When the tx completes at the DB, the proxy increments
the version number of the tables.

• Early version releases: Last-use notation to increment the table
version.

Nuevas tendencias en sistemas distribuidos 11

Distributed versioning.Performance

Conservative 2PL: wait until all
locks are granted at the begining.
EarlyRel: new versions are
produced at commit. Waits for the
table version.
LateAcq: Waits for all table versions
ar the beginning. Wew versions are
produced after last use of a table.

Simulated DB!!

Nuevas tendencias en sistemas distribuidos 12

Distributed versioning.Performance

Nuevas tendencias en sistemas distribuidos 13

Level 0: lazy update anywhere
Level 1: Writes are totally ordered. Reads maybe inconsistent.
Level 2: Writes are totally ordered. Reads up to x seconds
stale, a client reads his/her writes.

