“Distributed Versioning: Consistent Replication for
Scaling Back—end Databases of Dynamic Content
Web Sites”

Cristiana Amza, Alan L. Cox and Willy Zwaenepoel.

Proceedings of the ACM/IFIP/Usenix Middleware Conference,
June 2003

Distributed Versioning

Nuevas tendencias en sistemas distribuidos

Distributed Versioning

W orrrrray -
Ethernet
switch Application Scheduler
Server /
Web Server Application DB Server
Server

Nuevas tendencias en sistemas distribuidos

Distributed versioning

e Each transaction declares the accessed tables and
the kind of operation (read/write) before

execution.
e Each table has a version number.

* The scheduler assings table versions atomically
(one transaction at a time).

— |f two transactions conflict, one will have larger
version numbers.

— Versions are created when a transaction completes its
last access to that table.

Distributed versioning

* No version number is assigned to single
operation queries (read only). They are
forwarded to one replica. It executes after all
conflicting transactions complete.

e Other transactions: operations at each replica
are executed in version number order. This
guarantees that all replicas execute conflicting
transactions in the same total order. 1-copy-
serializability.

Distributed versioning

 The scheduler sends writes to all replicas. It
waits for the first response to reply the client.

* Reads are sent to one replica.

* |t maintains for each replica the status of each
write operation and the current version
number. It sends a read operation that follows
a write to a replica that has completed the
previous write.

TO :
T1:

Distributed versioning

begin
write a
write b
write c
end

1 2 3 4 5 6
al,b0,cO
al,bl,cl

1 2 3 4

TO: a0,b0,cO
T1: al,bl,cl

Nuevas tendencias en sistemas distribuidos

Distributed versioning.
Implementation

* Three kinds of processes: scheduler (one),
sequencer (one) and database proxy (one per
replica).

* Transaction start: sequencer assigns version
numbers to each accessed table and returns
the info to the scheduler.

* The sequencer keeps two values: next-for-
read and next-for-write. It returns the
corresponding value.

Distributed versioning.
Implementation

Sog i (& g DB
=) 3 H
Oy VN ' Wﬁj
(M agin_ : Ow W [
C Rosp | Sch | C Resp | Schlm e m—— —-| DB
ROL™N mol
P Nerss
a X
(a} Bagin | (b) Write (&% paa
_______________________________ A e
S o 1l E (=) DBy
s I -
-)i o '@ — i — (D Commt - ::‘:':.:i-'? -
e s e
| L 1
i L3
(c) Read oea| 1 (d) Commit ™ <Y pes

Nuevas tendencias en sistemas distribuidos

Distributed versioning.
Implementation

e These two counters are incremented when
there is a conflicting operation.

e Next-for-write is incremented when there is
write and next-for-read is set to next-for-

write.

* After a sequence number is assighed for a
read operation next-for-write is incremented.

operation WWTIYWTYTTrWw
next for read 012244 4 4
next for write 0122346567
version assigned 012 3 44 47

7
7

Errors ?

Distributed versioning.
Implementation

The DB proxy keeps version numbers.

A write query is executed at a replica only when the version
numbers of each table at the DB match the version numbers of the
query.

A read query is executed when the version numbers are greater
than or equal to the version numbers of the query.

Writes are blocked at the replica and reads by the scheduler.

Commit/aborts are tagged with version number. It is sent to all
replicas. When the tx completes at the DB, the proxy increments
the version number of the tables.

Early version releases: Last-use notation to increment the table
version.

operation WWZIXWZIXTIXTIrw
version assigned 0 1 2 3 4 4 4 7
version produced 1 2 3 4 5 6 7 8

Distributed versioning.Performance

Throughput (Wips)

Through put (Wips)

450

TPC-W shopping mix
Simulated DB!!

400

350

—e—DVersion

300
250

—m—DVersion - EarlyRel

200

—k—DVersion - LateAcq

—&— Conservative 2PL

150
100 4 Eager
a0 -

0 H

| T T T T Conservative 2PL: wait until all
10 15 20 25 30 35 40 45 50 55 60 65

0
Database engines locks are granted at the begining.
EarlyRel: new versions are
produced at commit. Waits for the
. TPC-W ordering mix table version.
160 LateAcq: Waits for all table versions
Eg > reoveson AT the beginning. Wew versions are
o ﬁ T 1 s pversion - anj@fioduced after last use of a table.
90 / —¥—DVersion - LateAcq
60 —— Conservative 2PL
40 [Eager
20 1
0 T T T T T

i) 10 15 20 25 30 35
Databas® Efigifiegencencias en sistemas distribuidos 12

Distributed versioning.Performance

Throughput (Wips)

TPC-W browsing mix

Level O
——evel 1
—— Level 2
—i— Special
—#k— DVersion
—e— Eager

0 5 10 15 20 25 30 35 40 45 50 55 60 @5

Database engines

Level O: lazy update anywhere

Level 1: Writes are totally ordered. Reads maybe inconsistent.
Level 2: Writes are totally ordered. Reads up to x seconds
stale, a client reads his/her writes.

Nuevas tendencias en sistemas distribuidos 13

