
CumuloNimbo Block Cache

McGill University

Review Meeting
Brussels

November 2013

FP7-257993

Architecture

Application Server (JBoss+Hibernate)

Object Cache

Query Engine (Derby)

Distributed File System (HDFS)

Block Cache (HBase)

Storage

Transactions

Concurrency
Controllers

Commit
Sequencers

Loggers

Load
Balancers

Monitors

Elastic
Manager

Transaction
Management

Platform
Management
Framework

Communication

Cloud
Deployer

Platform Scalability Benchmark Application Benchmarks

FP7-257993

• Already provided
– Tuple Interface
– Partitioning
– Elasticity

• To be adjusted
– Transactions

• Lightweight Transaction Support within HBase client
• Coordination with Transaction Manager

– Holistic Recovery
– Indexing

Block Cache based on HBase

FP7-257993

Hbase Architecture

Application

HBase Client

HBase

Master

HDFS

Datanode

Filesystem

HBase

RegionServer

Memstore

Block Cache

HDFS

Namenode

HDFS

Datanode

Filesystem

HBase

RegionServer

Memstore

Block Cache

HDFS

Datanode

Filesystem

HBase

RegionServer

Memstore

Block Cache

FP7-257993

SHBase: Transactional Support

> Transactional interface

> begin - Obtain new context from TM

 - Snapshot Isolation ; MVCC

> read - Read from your own snapshot

> write - Defer updates until commit

> commit a) Check with TM

 b) Flush & Persist write-set

> abort - Discard write-set

Application

HBase Client

HBase

RegionServer

Memstore

WALog

HBase

RegionServer

Memstore

WALog

Transaction

Manager

FP7-257993

Application

HBase Client

HBase

RegionServer

Memstore

WALog

HBase

RegionServer

Memstore

WALog

Transaction

Manager

> Transactional interface

> begin - Obtain new context from TM

 - Snapshot Isolation ; MVCC

> read - Read from your own snapshot

> write - Defer updates until commit

> commit a) Check with TM

 b) Flush & Persist write-set

> abort - Discard write-set

SHBase: Transactional Support

FP7-257993

> Transactional interface

> begin - Obtain new context from TM

 - Snapshot Isolation ; MVCC

> read - Read from your own snapshot

> write - Defer updates until commit

> commit a) Check with TM

 b) Flush & Persist write-set

> abort - Discard write-set

Application

HBase Client

HBase

RegionServer

Memstore

WALog

HBase

RegionServer

Memstore

WALog

Transaction

Manager

SHBase: Transactional Support

FP7-257993

> Transactional interface

> begin - Obtain new context from TM

 - Snapshot Isolation ; MVCC

> read - Read from your own snapshot

> write - Defer updates until commit

> commit a) Check with TM

 b) Flush & Persist write-set

> abort - Discard write-set

Application

HBase Client

HBase

RegionServer

Memstore

WALog

HBase

RegionServer

Memstore

WALog

Transaction

Manager

SHBase: Transactional Support

FP7-257993

> Transactional interface

> begin - Obtain new context from TM

 - Snapshot Isolation ; MVCC

> read - Read from your own snapshot

> write - Defer updates until commit

> commit a) Check with TM

 b) Flush & Persist write-set

> abort - Discard write-set

Application

HBase Client

HBase

RegionServer

Memstore

WALog

HBase

RegionServer

Memstore

WALog

Transaction

Manager

SHBase: Transactional Support

FP7-257993

SHBase: Transactional Support

> Transactional interface

> begin - Obtain new context from TM

 - Snapshot Isolation ; MVCC

> read - Read from your own snapshot

> write - Defer updates until commit

> commit a) Check with TM

 b) Flush & Persist write-set

> abort - Discard write-set

Application

HBase Client

HBase

RegionServer

Memstore

WALog

HBase

RegionServer

Memstore

WALog

Transaction

Manager

FP7-257993

Life Cycle

> Transaction lifecycle

 > Executing

 > Committed / Aborted

 > Flushed

 > Persisted

> Performance

> Asynchronous persistence

> Eventual persistence

> Reliability

 > Client failure

 > Server failure

Application

HBase Client
Transaction

Manager

WS

FP7-257993

> Transaction lifecycle

 > Executing

 > Committed / Aborted

 > Flushed

 > Persisted

> Performance

> Asynchronous persistence

> Eventual persistence

> Reliability

 > Client failure

 > Server failure

Application

HBase Client

Transaction

Manager

TM Log

WS

WS

Life Cycle

FP7-257993

> Transaction lifecycle

 > Executing

 > Committed / Aborted

 > Flushed

 > Persisted

> Performance

> Asynchronous persistence

> Eventual persistence

> Reliability

 > Client failure

 > Server failure

Application

HBase Client

HBase

RegionServer

Memstore

Transaction

Manager

TM Log

HBase

RegionServer

Memstore

WS

W S

WS

Life Cycle

FP7-257993

> Transaction lifecycle

 > Executing

 > Committed / Aborted

 > Flushed

 > Persisted

> Performance

> Asynchronous persistence

> Eventual persistence

> Reliability

 > Client failure

 > Server failure

Application

HBase Client

HBase

RegionServer

Memstore

WALog

HBase

RegionServer

Memstore

WALog

Transaction

Manager

TM Log

WS

W S

W S

WS

Life Cycle

FP7-257993

Life Cycle

> Transaction lifecycle

 > Executing

 > Committed / Aborted

 > Flushed

 > Persisted

> Performance

> Asynchronous persistence

> Eventual persistence

> Reliability

 > Client failure

 > Server failure

Application

HBase Client

Transaction

Manager

TM Log

HDFS

Datanode

HBase

RegionServer

Memstore

WALog

HDFS

Datanode

HBase

RegionServer

Memstore

WALog

WS

W S

W S

W S

WS

W S

FP7-257993

Life Cycle

> Transaction lifecycle

 > Executing

 > Committed / Aborted

 > Flushed

 > Persisted

> Performance

> Asynchronous persistence

> Eventual persistence

> Reliability

 > Client failure

 > Server failure

Application

HBase Client

Transaction

Manager

TM Log

HDFS

Datanode

HBase

RegionServer

Memstore

WALog

HDFS

Datanode

HBase

RegionServer

Memstore

WALog

WS

W S

WS

W S

W S

W S

FP7-257993

Failure Handling

> Transaction lifecycle

 > Executing

 > Committed / Aborted

 > Flushed

 > Persisted

> Performance

> Asynchronous persistence

> Eventual persistence

> Reliability

 > Client failure

 > Server failure

Application

HBase Client

Transaction

Manager

TM Log

HDFS

Datanode

HBase

RegionServer

Memstore

WALog

HDFS

Datanode

HBase

RegionServer

Memstore

WALog

WS

W S

WS

W S

W S

W S

FP7-257993

Recovery

> Transaction lifecycle

 > Executing

 > Committed / Aborted

 > Flushed

 > Persisted

> Recovery management

 > Tracking (checkpointing)

 > Failure detection

 > Failure recovery

Application

HBase Client

HDFS

Datanode

HBase

RegionServer

Memstore

WALog

HDFS

Datanode

HBase

RegionServer

Memstore

WALog

Transaction

Manager

Recovery

Manager

TM Log

WS

W S

WS

W S

W S

W S

FP7-257993

• Complete Redesign

• Minimal information kept

• Standardized implementation according to
CumuloNimbo practices

Recovery last year

FP7-257993

• At SHBase Client:
– After log / before flushing to HBase

– All transactions that haven’t been flushed before crash
need REPLAY

• At Hbase
– After receiving the write-set before persisting to

HDFS

– All transactions that haven’t been persisted before
crash need REPLAY

Recovery: Failure Points

FP7-257993

• Recovery Manager

– Monitor state messages

• Clients

• Region Servers

– If we don’t receive state messages for some time,
then the monitored component is declared FAILED

Recovery: Failure Detection

FP7-257993

• Recovery Manager
– Tracking transactions and flushes

• Client and Server send state messages on
regular intervals
– Loosely related to checkpointing

• Keeps track of
– Txn with smallest idea so that no txn with smaller

commit timestamp needs replay

Recovery Manager

FP7-257993

• At client/server
– Local Tmin: all txn with CT < Tmin are flushed/persistet
– Send local Tmin to Recovery message in heartbeat

• Recovery Manager
– Tmin-flushed: min over all Tmin of clients
– Tmin-persisted: min over all Tmin of servers

• Challenge:
– How does server know that it will not receive from client

a transaction with smaller CT
– Recovery manager sends Tmin-flushed to region servers

State messages

FP7-257993

• Simply use log to replay
• Special client that uses same transaction CT as

seen in the log

• For server recovery:
– Regions are taken by other servers (provided by Hbase)
– Perform HBase recovery
– Then only replay writes that belong to failed server
– Tmin of recovering server has to be reset

Recovery

FP7-257993

150 200 250 300

nse Time (ms)
Sync Persist

Async Persist

50 10050
100

150
200

250
300

Respon

Throughput (tps)

Performance: Throughput

FP7-257993

Performance: Heartbeat

200

250

300

Throughput (tps) Response time (ms)

150

50 250 1000 5000 10000

Heartbeat interval (ms)

FP7-257993

Recovery

800500 600 700 800
e (ms)400 500 600 700

se time (ms)200 300 400 500

Response time

0 100 200 3000
60

120
180

240
300

Respons

00
60

120
180

240
300

Time (s)
Time (s)

FP7-257993

Monitoring

• To PMF

– Get, Put, Delete: count, time

– Scan, Multiget: count, size, time

– Conflicts, Aborts, Commits: count, time, rate

– Txns, ROTxns, RWTxns: count, time

– We provide both windowed metrics (window = metrics polling period)
and total metrics (over the life of the component's jvm)

• Low level analysis

– Per operation analysis group by txnid

– Per operation analysis group by table

FP7-257993

• Feasibility Study whether possible at HBase
level

• Two prototypes
– As HBase tables (just as Derby)

– Special main-memory only structure within Co-
processors

• All functionality within Co-processors (no
change to HBase itself)

Indexing within HBase

FP7-257993

• DDL

– Create Index (on empty table / table that contains
already data)

– Drop Index

• DML

– Put (co-processor wrappers)

– Get with index

Functionality

FP7-257993

Within HBase tables

Table T1 – User Data

Region T11

HIC

Region T12

HIC

Table M – Master
Index Table

Region M1

MITC

Region M2

MITC

Region T1n

HIC

Region Mn

MITC

Table I1 – Index
Table – T1, A

Region I11

ITC

Region I12

ITC

Region I1n

ITC

ID A B

1 X ...

2 Y ...

ID A B

10 X ...

11 Z ...

ID A B

20 ZY ...

21 ZZ ...

ID IDX:PR

X 1,10

Y 2

ID IDX:PR

Z 11

ZY 20

ID IDX:PR

ZZ 21

... ...

ID IDXCOL:A

T1 I1

...

ID IDXCOL:?

... ...

... ...

ID IDXCOL:?

... ...

... ...

HIC : HTable Index Coprocessor
MITC: Master Index Table Coprocessor
ITC : Index Table Coprocessor

FP7-257993

Performance: Inserts

FP7-257993

Performance: gets

FP7-257993

• Index data is at same location as Table Data

– Index region correlated with table region

– No remote access

• Splits more challenging

• Only main memory: upon recovery recreation

Within Co-processors

FP7-257993

Performance Inserts

FP7-257993

Performance: gets

FP7-257993

• Range Query support

• Comparison with Derby Indexing

Extension plans

FP7-257993

FP7-257993

FP7-257993

FP7-257993

