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• Attaining scalable SQL processing on top of a NoSQL data 

store 

– A distributed query engine architecture that does not 

introduce coordination bottlenecks 

• Distillation of a query engine functionality out of an open 

source RDBMS 

– Separation of concerns: execution, transactions, and storage 

Advancement with Respect to SOTA 

November 27th, 2013 Final review meeting, Brussels 3 



FP7-257993 

• General approach to the Query Engine 

• Selection of the Query Engine codebase 

• Data manipulation (DML) implementation and performance 

– SELECT, INSERT, UPDATE, DELETE 

• Data definition (DDL) implementation 

– CREATE/ALTER TABLE, ... 

• Monitoring and platform integration 

Overview 
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Generic SQL DBMS architecture 
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Query Engine architecture 
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• Issues 

– Generation of adequate plans 

– Plan selection cost 

– Step execution overhead 

– Optimizer customizability  

– Minimal code intrusion 

– Component interoperability (e.g., communication) 

• Non-issues 

– Isolation (replaced) 

– Implementations of indexes (replaced) 

– Effectiveness of caching and block I/O (replaced)  

 

 

 

Query Engine selection criteria 
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• Selection of relevant queries (sources: SPECj and TPC-E)  

• Analysis of the query plans generated: 

–  plan itself 

–  selected operators 

–  compilation and optimization time 

• For the target workload, the derived plan is similar to 

PostgreSQL and differs slightly from MonetDB 

• Apache Derby is slower when planning queries, but query 

caching mitigates this issue. 

• Apache Derby facilitates integration with other components 

 

Query Engine selection: Apache Derby 
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• Mapping of relational to HBase column-oriented model 

– Usage of a single column family in each table, indexed on 

the primary key 

– Data types and conversions: 

• Order preservation of the primary key byte encoding 

• Relational NULL as absent columns in HBase 

– Secondary indexes stored as additional HBase tables 

• Identification and redirection of relevant internal interfaces 

– Scan operators 

– Transactional interfaces 

Implementation issues 
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• Fetching data through secondary indexes: 

– Challenge: Due to encapsulation, when doing row fetches, 

the information about the scan was no longer available 

– Direct implementation would use 1 scan on the index + N 

individual fetches on the table 

– Solution: to propagate additional information in Derby. It now 

uses 1 scan on the index + 1 bulk fetch on the table 

 

Performance improvements: 

reducing network traffic (indexed) 
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• HBase selection pushed down into Hbase: 

– Challenge: Filtering at the scan operator level does not avoid 

network traffic 

– Solution: Indivitual conditions in Derby are translated using 

the HBase’s SingleColumnValueFilter 

– Combine tests on single columns using the HBase’s FilterList 

Performance improvements: 

reducing network traffic (not indexed) 
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• Optimizing to the integrated stack: 

– Takes advantage of encapsulation in the computation of 

costs for each operator 

– Scan cost computation considering HBase operations used 

for implementing them 

– Batch sizes and weights selected using a calibration 

database 

 

Performance improvements: 

optimizer 
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Performance improvements: 

statistics computation 
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• What happens after simple 

adaptation of QE: 

1. Read table into each instance 

2. Compute statistics 

3. Write back to local storage 

• Derby’s optimize uses cardinality statistics: The number of 

unique values in the index keys (primary and secondary) 

• Computed using a table scan on the index 

• Results stored in a system table (SYSSTATISTICS). 
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Performance improvements: 

statistics computation 
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• To limit the network traffic and 

exploit parallelism, we use HBase 

coprocessors: 

1. The coprocessor is loaded into all 

tables 

2. Each coprocessor returns partial 

(region) results 

3. A QE instance then merges all 

partial results 

4. Stores them back in a shared 

HBase table 
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• Schema and Data Definition Language (DDL) in Derby: 

– Application schemas stored in relational system tables 

– System tables residing in the SYS namespace 

– Accessed using the DataDictionary interface, that caches the 

schema as native objects  

• Contents: 

– Row counts 

– Columns and types 

 

 

 

 

 

 

Dynamic DDL 
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• Schema storage in HBase 

– Schema is stored in regular tables but cached (slightly 

different access paths) 

– A single copy is shared by all QE instances 

– Local caches have to be kept consistent 

• Lazy replication of row counts, changed by DML 

statements: 

– Batched using atomic operations 

– Re-read periodically 

 

Dynamic DDL 
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• Provides support for: 

– CREATE/DROP TABLE 

– ALTER/ADD and ALTER/DROP COLUMN 

• Assumption: 

– All transactions containing DDL statements must be declared 

as DDL transactions 

 

 

Dynamic DDL 
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• Multi-versioned database schemas: 

– Made possible by flexible mapping between relational and 

HBase schemas 

– Required multiple concurrent active DataDictionaries in a QE 

• Conflicting DDL statements prevented by transaction 

manager as a write-write conflict on SYS tables 

• Notification through Zookeeper to update schema 

 

 

 

 

 

 

 

Dynamic DDL 
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• HBase table and column names matching relational table, 

index, and column names 

– Needed for interoperability with NoSQL applications 

– Useful for debugging 

• Simpler configuration with properties for debugging and 

logging 

• Unit and integration tests: 

– Include subset of Apache Derby tests 

– Added tests for new functionality 

 

 

Integration support 
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• Statistics required for elastic management: 

– Average operation latency 

– Average operation size 

• Operations recorded: 

– HBase and transactional primitives 

• Results saved in Zookeeper: 

– /monitoring/queryengine/instance_id 

– Summary statistics and an histogram 

– Total and for the last measurement period 

Performance monitoring 
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• A logical architecture leveraging a sub-set of components that are 

commonly found within a traditional RDBMS 

• Decision criteria to select an existing implementation as the base for 

CumuloNimbo’s Query Engine, with an analysis of several candidates 

• A prototype that validates the approach based on Derby and 

supporting stateless handling of DML statements 

• Multiple performance optimizations, reducing network traffic and taking 

advantage of distributed computation in HBase 

• Relational optimizer tuned to the proposed architecture 

• Dynamic handling of DDL statements with multiversion schema 

• Performance monitoring hooks 

• Integration in the CumuloNimbo stack 

Results and contributions 
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