
FP7-257993

Query Engine

José Pereira, U. Minho

CumuloNimbo

Final Review Meeting

Brussels, Belgium

November 27, 2013

FP7-257993

Positioning with Respect to the Project

November 27th, 2013 Final review meeting, Brussels 2 2

Application Server (JBoss+Hibernate)

Object Cache

Query Engine (Derby)

Distributed File System (HDFS)

NO SQL Data Store (Hbase)

Storage

Transactions

Concurrency

Controllers

Commit

Sequencers

Loggers

Load

Balancers

Monitors

Elastic

Manager

Transaction

Management
Platform

Management

Framework

Commu-

nication

Cloud

Deployer

Application Benchmarks Platform Scalability Benchmark

FP7-257993

• Attaining scalable SQL processing on top of a NoSQL data

store

– A distributed query engine architecture that does not

introduce coordination bottlenecks

• Distillation of a query engine functionality out of an open

source RDBMS

– Separation of concerns: execution, transactions, and storage

Advancement with Respect to SOTA

November 27th, 2013 Final review meeting, Brussels 3

FP7-257993

• General approach to the Query Engine

• Selection of the Query Engine codebase

• Data manipulation (DML) implementation and performance

– SELECT, INSERT, UPDATE, DELETE

• Data definition (DDL) implementation

– CREATE/ALTER TABLE, ...

• Monitoring and platform integration

Overview

November 27th, 2013 Final review meeting, Brussels 4

FP7-257993

Generic SQL DBMS architecture

November 27th, 2013 Final review meeting, Brussels 5

FP7-257993

Query Engine architecture

November 27th, 2013 Final review meeting, Brussels 6

transactions

q
u

e
ry

 e
n

g
in

e

...

selection projection join ...

available operators

transactional datastore client adapter

statisticsseq scan index scan

b
lo

c
k

 c
a

c
h

e

tuple store

optimizer

compiler

 client

 interface

Dynamic

schema

FP7-257993

• Issues

– Generation of adequate plans

– Plan selection cost

– Step execution overhead

– Optimizer customizability

– Minimal code intrusion

– Component interoperability (e.g., communication)

• Non-issues

– Isolation (replaced)

– Implementations of indexes (replaced)

– Effectiveness of caching and block I/O (replaced)

Query Engine selection criteria

November 27th, 2013 Final review meeting, Brussels 7

FP7-257993

• Selection of relevant queries (sources: SPECj and TPC-E)

• Analysis of the query plans generated:

– plan itself

– selected operators

– compilation and optimization time

• For the target workload, the derived plan is similar to

PostgreSQL and differs slightly from MonetDB

• Apache Derby is slower when planning queries, but query

caching mitigates this issue.

• Apache Derby facilitates integration with other components

Query Engine selection: Apache Derby

November 27th, 2013 Final review meeting, Brussels 8

FP7-257993

• Mapping of relational to HBase column-oriented model

– Usage of a single column family in each table, indexed on

the primary key

– Data types and conversions:

• Order preservation of the primary key byte encoding

• Relational NULL as absent columns in HBase

– Secondary indexes stored as additional HBase tables

• Identification and redirection of relevant internal interfaces

– Scan operators

– Transactional interfaces

Implementation issues

November 27th, 2013 Final review meeting, Brussels 9

FP7-257993

• Fetching data through secondary indexes:

– Challenge: Due to encapsulation, when doing row fetches,

the information about the scan was no longer available

– Direct implementation would use 1 scan on the index + N

individual fetches on the table

– Solution: to propagate additional information in Derby. It now

uses 1 scan on the index + 1 bulk fetch on the table

Performance improvements:

reducing network traffic (indexed)

November 27th, 2013 Final review meeting, Brussels 10

Q
E

 l
a
ye

r
 H

B
a
s
e
 l
a
ye

r

3

1

2

Q
E

 l
a
ye

r
 H

B
a
s
e
 l
a
ye

r

3

1

2

2

2

2

FP7-257993

• HBase selection pushed down into Hbase:

– Challenge: Filtering at the scan operator level does not avoid

network traffic

– Solution: Indivitual conditions in Derby are translated using

the HBase’s SingleColumnValueFilter

– Combine tests on single columns using the HBase’s FilterList

Performance improvements:

reducing network traffic (not indexed)

November 27th, 2013 Final review meeting, Brussels 11

Q
E

 l
a
ye

r
 H

B
a
s
e
 l
a
ye

r 1

3

Q
E

 l
a
ye

r
 H

B
a
s
e
 l
a
ye

r

3

2

FP7-257993

• Optimizing to the integrated stack:

– Takes advantage of encapsulation in the computation of

costs for each operator

– Scan cost computation considering HBase operations used

for implementing them

– Batch sizes and weights selected using a calibration

database

Performance improvements:

optimizer

November 27th, 2013 Final review meeting, Brussels 12

FP7-257993

Performance improvements:

statistics computation

November 27th, 2013 Final review meeting, Brussels 13

1

• What happens after simple

adaptation of QE:

1. Read table into each instance

2. Compute statistics

3. Write back to local storage

• Derby’s optimize uses cardinality statistics: The number of

unique values in the index keys (primary and secondary)

• Computed using a table scan on the index

• Results stored in a system table (SYSSTATISTICS).

Q
E

 l
a
ye

r
 H

B
a
s
e
 l
a
ye

r

FP7-257993

Q
E

 l
a
ye

r
 H

B
a
s
e
 l
a
ye

r
Performance improvements:

statistics computation

November 27th, 2013 Final review meeting, Brussels 14

• To limit the network traffic and

exploit parallelism, we use HBase

coprocessors:

1. The coprocessor is loaded into all

tables

2. Each coprocessor returns partial

(region) results

3. A QE instance then merges all

partial results

4. Stores them back in a shared

HBase table

2

4

FP7-257993

• Schema and Data Definition Language (DDL) in Derby:

– Application schemas stored in relational system tables

– System tables residing in the SYS namespace

– Accessed using the DataDictionary interface, that caches the

schema as native objects

• Contents:

– Row counts

– Columns and types

Dynamic DDL

November 27th, 2013 Final review meeting, Brussels 15

FP7-257993

• Schema storage in HBase

– Schema is stored in regular tables but cached (slightly

different access paths)

– A single copy is shared by all QE instances

– Local caches have to be kept consistent

• Lazy replication of row counts, changed by DML

statements:

– Batched using atomic operations

– Re-read periodically

Dynamic DDL

November 27th, 2013 Final review meeting, Brussels 16

FP7-257993

• Provides support for:

– CREATE/DROP TABLE

– ALTER/ADD and ALTER/DROP COLUMN

• Assumption:

– All transactions containing DDL statements must be declared

as DDL transactions

Dynamic DDL

November 27th, 2013 Final review meeting, Brussels 17

FP7-257993

• Multi-versioned database schemas:

– Made possible by flexible mapping between relational and

HBase schemas

– Required multiple concurrent active DataDictionaries in a QE

• Conflicting DDL statements prevented by transaction

manager as a write-write conflict on SYS tables

• Notification through Zookeeper to update schema

Dynamic DDL

November 27th, 2013 Final review meeting, Brussels 18

FP7-257993

• HBase table and column names matching relational table,

index, and column names

– Needed for interoperability with NoSQL applications

– Useful for debugging

• Simpler configuration with properties for debugging and

logging

• Unit and integration tests:

– Include subset of Apache Derby tests

– Added tests for new functionality

Integration support

November 27th, 2013 Final review meeting, Brussels 19

FP7-257993

• Statistics required for elastic management:

– Average operation latency

– Average operation size

• Operations recorded:

– HBase and transactional primitives

• Results saved in Zookeeper:

– /monitoring/queryengine/instance_id

– Summary statistics and an histogram

– Total and for the last measurement period

Performance monitoring

November 27th, 2013 Final review meeting, Brussels 20

FP7-257993

• A logical architecture leveraging a sub-set of components that are

commonly found within a traditional RDBMS

• Decision criteria to select an existing implementation as the base for

CumuloNimbo’s Query Engine, with an analysis of several candidates

• A prototype that validates the approach based on Derby and

supporting stateless handling of DML statements

• Multiple performance optimizations, reducing network traffic and taking

advantage of distributed computation in HBase

• Relational optimizer tuned to the proposed architecture

• Dynamic handling of DDL statements with multiversion schema

• Performance monitoring hooks

• Integration in the CumuloNimbo stack

Results and contributions

November 27th, 2013 Final review meeting, Brussels 24

