Lightweight Reflection for Middleware-based Database Replication

J. Salas*, R. Jiménez-Peris*, M. Patino-Martinez*
Universidad Politecnica de Madrid (UPM)

Madrid, Spain

{jsalas, rjimenez, mpatino } @fi.upm.es

Abstract

Middleware-based database replication ap-
proaches have emerged in the last few years as an
alternative to traditional database replication im-
plemented within the database kernel. A middle-
ware approach enables third party vendors to pro-
vide high availability solutions, a growing prac-
tice nowadays in the software industry. However,
middleware solutions often lack scalability and ex-
hibit a number of consistency and performance is-
sues. The reason is that in most cases the middle-
ware has to handle the database as a black box,
and hence, cannot take advantage of the many
optimizations implemented in the database ker-
nel. Thus, middleware solutions often reimplement
key functionality but cannot achieve the same effi-
ciency as a kernel implementation. Reflection has
been proposed during the last decade as a fruitful
paradigm to separate non-functional aspects from
functional ones, simplifying software development
and maintenance whilst fostering reuse. However,
fully reflective databases are not feasible due to the
high cost of reflection. Our claim is that by expos-
ing some minimal database functionality through a
lightweight reflective interface, efficient and scal-
able middleware database replication can be at-
tained. In this paper we explore a wide variety
of such lightweight reflective interfaces and dis-
cuss what kind of replication algorithms they en-
able. We also discuss implementation alternatives
for some of these interfaces and evaluate their per-
formance.

Keywords: database replication, reflection,
middleware, fault-tolerant distributed systems.

*This work has been partially funded by the Euro-
pean Adapt project, the Spanish Ministry of Education and
Science (MEC) under grant #TIN2004-07474-C02-01, and
the Madrid Regional Research Council (CAM) under grant
#0505/TIC/000285.

B. Kemme
McGill University
Montreal, Quebec, Canada
kemme @cs.mcgill.ca

1 Introduction

Database replication is a topic that has attracted
a lot of research during the last years. There
are two main reasons: on the one hand databases
are frequently the bottleneck of more complex
systems such as multi-tier architectures that need
higher throughput; on the other hand, databases
store critical information that should remain highly
available. Database replication has been employed
to address these issues. A critical issue of database
replication is how to keep the copies consistent
when updates occur. That is, whenever a transac-
tion updates data records, these updates have to be
performed at all replicas. Traditional approaches
have studied how to implement replication within
the database, what we term the white box approach
[11, 10, 22, 23]. However, the white box approach
has a number of shortcomings. Firstly, it requires
access to source code. This means that only the
database vendor will be able to implement them.
Secondly, it is typically tightly integrated with the
implementation of the regular database function-
ality, in order to take advantage of the many op-
timizations performed within the database kernel.
However, this approach results in the creation of
inter-dependencies between the replication code
and the other database modules, and is hard to
maintain in a continuously evolving codebase.

Recent research has focused on how to perform
replication outside the database [2, 36, 12, 5, 4, 15,
31, 33, 35, 26], typically as a middleware layer.
However, nearly none of them is truly a black-box
approach in which the database is used exclusively
based on its user interface since this would lead to
very simplistic and inefficient replication mecha-
nisms. Instead, in the simplest form, they require
some information from the application. In the

most basic form, they parse incoming SQL state-
ments in order to determine the tables accessed by
an operation [12]. This allows to perform simple
concurrency control at the middleware layer. More
stringent, they might require the first command
within a transaction to indicate whether the trans-
action is read-only or an update transaction [35],
or to indicate the tables that are going to be ac-
cessed by the transaction [5, 4, 32]. Nevertheless,
many do not require any additional functionality
from the database system itself. However, this can
lead to inefficiencies. For instance, it requires up-
date operations or even entire update transactions
to be executed at all replicas which results in lim-
ited scalability. We term this approach symmetric
processing. An alternative is asymmetric process-
ing of updates that consists in executing an update
transaction at any of the replicas and then propa-
gate and apply only the updated tuples at the re-
maining replicas. [20] shows that the asymmetric
approach results in a dramatic increase of scala-
bility even for workloads with large percentages
(80% and above) of update transactions. However,
retrieving the writesets and applying them at re-
mote sites is non-trivial and is most efficient if the
database system provides some support. We be-
lieve that even further replication efficiency could
be achieved, if the database exposed even more
functionality to the middleware layer.

Replication
Middleware
Reification] Instrospection
Intercession
Y
Meta
Interface
5 3
Client =
Application g E Database
¥ <

Figure 1. A reflective database

Thus, in this paper we try to combine the ad-
vantages of white and black box approaches by
resorting to computational reflection [28]. The
essence of computational reflection lies in the ca-
pability of a system to reason about itself and its
behaviour, and act upon it. A reflective system
is structured around a representation of itself or
meta-model. This meta-model might provide dif-
ferent abstractions of the underlying system with
different levels of detail. A reflective system is

split into: a base-level (the database in Figure 1),
where the regular computation takes place, and a
meta-level, where the system reasons about this
regular computation and extends it (the replication
middleware in Figure 1). Reification is the process
by which changes in the base-model are reflected
in the meta-model. Introspection is the mecha-
nism that enables the meta-model to interrogate
the base-model about its structure and/or behavior.
Intercession is the mechanism through which the
meta-model can change the state and/or behavior
of the base-model.

We use reflection to expose some functionality
of the database resulting in what we term a gray
box approach to database replication (Fig. 1). Un-
like previous reflective approaches for middleware
[25, 9], our goal is not to propose a full-fledged
metamodel of a database, since the inherent over-
heads are prohibitive and incompatible with the
high performance requirements of databases. Our
aim is to identify a set of composable, minimal
and lightweight reflective interfaces that enable to
attain high performance replication at the middle-
ware level. We start by a set of basic interfaces
which are essential for the practicality of the ap-
proach. Functionality provided by such interfaces
is already implicitly used by existing protocols.
From there, we reason about more advanced func-
tionality which we have identified of being ben-
eficial for database replication. These advanced
interfaces allow us to obtain the combined bene-
fits of black and white box approaches. That is,
on the one hand we achieve separation of con-
cerns by having separate components for the regu-
lar database functionality and the replication code;
on the other hand, we can perform sophisticated
optimizations in our replication middleware.

In the following, Section 2 gives an overview
of techniques used in database replication. Sec-
tion 3 presents two replication algorithms that will
serve as examples to discuss our needs for reflec-
tion. Section 4 provides a series of interesting re-
flective interfaces. Section 5 presents the imple-
mentation and evaluation of some specific reflec-
tive interface. Section 6 presents related work and
Section 7 concludes the paper.

2 Taxonomy of Database Replication
Protocols

We classify replication protocols across several
dimensions, which extends the criteria defined in
previous taxonomies [16, 39]:

e when to propagate changes: In eager proto-
cols updates or the changes of a transaction
(also called writesets) are propagated as part
of the original transaction. In contrast, with
lazy replication, updates are propagated as a
separate transaction.

where to execute update transactions: Pri-
mary copy replication requires that update
transactions are executed at a given site (the
primary). The primary propagates the changes
to the secondary replicas which only accept
read-only transactions from their local clients.
In order to schedule read-only transactions to
secondaries and updates to the primary, some
systems require the application program to tag
transactions as read-only or not [35]. If update
transactions can be executed at any replica, the
replication protocol follows an update every-
where approach.

number of messages: This parameter consid-
ers the number of messages per transaction.
Some protocols use a constant number of mes-
sages, while others require a linear number of
messages depending on the number of update
operations within the transaction.

coordination protocol: Some replica control
mechanisms require a coordination protocol
among the replicas in order to terminate the
transaction (voting termination). In others,
each replica decides itself about the outcome
of a transaction given the information it has re-
ceived so far (non-voting).

correctness criteria: The correctness cri-
teria typically implemented is [-copy-
serializability (1CS) [8]. Serializability
guarantees that the concurrent execution of
transactions is equivalent to a serial execution.
ICS guarantees that a replicated execution
is equivalent to a serial execution over a
non-replicated database. Centralized database
systems usually offer apart of serializability
more relaxed forms of isolation, such as the
ANSI isolation levels or snapshot isolation
[7]. Snapshot isolation is based on multi-
version optimistic concurrency control as
implemented by Oracle, Microsoft SQLServer
(the just released Yukon), and PostgreSQL.
Accordingly, 1-copy-snapshot-isolation [26]
or generalized snapshot isolation [14] define
what it means to provide snapshot isolation in
a replicated system.

concurrency control: Replica control can be
combined with both optimistic and pessimistic

concurrency control. A pessimistic approach
restricts concurrency to enforce consistency at
all replicas. For instance, a protocol could
execute all update transactions sequentially to
ensure the same state at all replicas. A pro-
tocol can increase concurrency in the repli-
cated database by having some a priori knowl-
edge about the data objects that are going to
be modified. With this, transactions that ac-
cess different objects can be executed in par-
allel and those that access the same objects
are executed sequentially. An object can be
on the granularity of a table, a tuple or a con-
flict class. Conflict classes are partitions of
the data, and have to be defined by the ap-
plication in advance. This facility is available
in most commercial databases (Oracle, DB2,
Sybase). One may think that having knowl-
edge about conflict classes of a transaction is
unrealistic. However, in many cases a database
is accessed via well-defined application soft-
ware packages which can be parsed to detect
the update patterns. Note, however, that con-
flict classes and tables are typically of quite
coarse granularity. Hence, some transactions
might be executed serially (because accessing
the same table/conflict class) although they do
not conflict on the tuple level. Optimistic ap-
proaches submit potentially conflicting trans-
actions in parallel. Then, after transaction exe-
cution a validation phase is run which checks if
there was a conflict among the transaction be-
ing validated and those that run concurrently
and already validated. If this is the case, the
validating transaction has to abort.

update processing: As mentioned above, there
are two ways of processing update transac-
tions: symmetric or asymmetric processing.
With symmetric processing each update trans-
action is submitted and fully executed at all
replicas. On the other hand, in an asymmet-
ric protocol update transactions are executed at
a single replica and only their changes (write-
set) are propagated to the rest of the replicas.
Some approaches lie in between [12, 5] being
symmetric at the statement level, but asym-
metric at the transaction level. That is, if an
update transactions contains both update and
query statements, the query statements are ex-
ecuted at one replica while update statements
are executed at all replicas.

e fransaction restrictions: Another interesting

dimension is related to the constraints set on

the kind of transactions that can be replicated.
Some protocols only allow single statement
transactions (known as auto-commit mode in
JDBC) [2]. Other protocols allow several
statements within a transaction but they have
to be known at the beginning of the transac-
tion. This can be implemented using stored
procedures (or prepared statements in JDBC)
[24, 33, 3]. The more general protocols do not
have any restriction on the number of state-
ments a transaction contains [22, 40, 26, 14,
35, 12].

3 Two Basic Database Replication
Protocols

The goal of this section is to give an intuition of
how a typical database replication protocol looks
like. We first look at very basic protocols. From
there, we discuss the use of reflective interfaces,
and the requirement for further reflective capabil-
ities in order to be able to enhance the basic pro-
tocols in different aspects. One of the protocols
is pessimistic and the other optimistic. Both pro-
tocols are eager, update-everywhere protocols and
provide one-copy serializability. They use group
communication systems [13] that provide a total
order multicast (all messages are delivered to all
replicas in the same order). For simplicity of de-
scription, we ignore reliability of message delivery
in this paper.

The pessimistic replication protocol performs
symmetric processing of updates and assumes sin-
gle statement transactions or multiple statement
transactions sent in a single request. In this pro-
tocol, a client sends its requests to one of the repli-
cas. Read-only transactions are processed locally.
However, update transactions are multicast in to-
tal order to all the replicas and processed at each
of them sequentially. This protocol is executed at
all the replicas and can be summarized as follows
(which resembles the one proposed by [2]):

I. Upon receiving a request for the execution of an
update transaction from the client: multicast the
request to all replicas with total order.

Il. Upon delivering an update transaction request:
enqueue the request in a FIFO queue.

Ill. Once a request is the first in the queue: submit
transaction for execution.

IV. Once a transaction finishes execution: remove it
from queue. If local return response to client.

This basic protocol only needs minimal reflec-

tive support. We discuss later how this basic proto-
col can be enhanced to improve performance and
functionality, and how these improvements require
extensions to the reflective interface.

The optimistic protocol is a simplified version
of [34] and performs asymmetric processing of up-
dates. For simplicity of description we assume that
each request is one transaction (multiple request
transactions could be handled in the same way).
A client submits a request to one of the replicas
where it is executed locally. If the transaction is
read-only the reply is returned to the client im-
mediately. Otherwise, a distributed validation is
needed that checks whether 1-copy serializability
has been preserved. If not, the validating transac-
tion is aborted.

I. Upon receiving a transaction request from the
client: execute it locally.
II. Upon completing the execution:
1. If read-only: return response to client.
2. If update transaction: extract the read (RS)
and writeset (W.S) and multicast them in total
order.

Ill. Upon delivering RS and WS of transaction tv:

validate it with transactions tc that committed af-

ter tv started.

1. If WS(te) N RS(tv) # 0: if local, abort tv and
return abort to client (it should have read tc’s
update but might have read an earlier version),
otherwise ignore tv

2. If WS(tc) N RS(tv) = 0: if tv not local, apply
the writeset of tv and commit. If local, commit
tv and return commit to user.

4 Reflective Interfaces for Database
Replication

In this section we study which reflective inter-
faces can be exhibited by databases to enable the
implementation of the protocols presented in the
previous section at the middleware level. Addi-
tionally, we also discuss how these protocols can
be enhanced and which extensions to the reflec-
tive interface these enhancements require. The in-
terfaces we present range from the well-known re-
quest interception to novel concepts such as reflec-
tive concurrency control.

4.1 Reflective Database Connec-
tion

Clients open a database connection by means
of a DB connectivity component (e.g. JDBC or

Replica Control Replica Control

via via
" Client Meta Server Meta
Client Server
Model Model
Send Request
Request Reception

o Reply o Send
eception Reply

'

| ! Interaction
! with other
+ Replicas

Figure 2. Reflective Database Con-
hection

ODBC), which runs at the client side, and sub-
mit transactions through it. The DB connectivity
component forwards the connection request and
the transactions to the DB server that processes
them. The DB server then returns the correspond-
ing replies that the connectivity component relays
to the client. Finally, when the client is done, it
closes the connection. Since database functional-
ity is split into a client and server part, we have a
base model, meta-level and meta-model at both the
client and server side. The client base-level is the
client connectivity component. The database base-
level is the connection handler. The well-known
request interception reflective technique can be ap-
plied at the connectivity component and the con-
nection handler to implement replication as a mid-
dleware layer.

4.1.1 Basic Algorithm

Figure 2 shows how reflective support is required
from the DB connectivity component and the con-
nection handler to enable the pessimistic basic al-
gorithm presented in the previous section. First,
since the client is not aware of the replication, the
connection request should be intercepted by the
meta-model. This provides the first hook to insert
the replication logic (SendRequest). The connec-
tion request will be reified and at the meta-model
the connection will be performed by first execut-
ing a replica discovery protocol (e.g. by means
of IP-multicast as in Middle-R [26]) to discover
the available replicas. Then, one is chosen and the
connection is established with it. This result will
be reified (ReplyReception) to the client meta-level
so that it can keep track of the replica to which it
is connected. The standard client request (trans-
action requests) and the responses from the server
can be intercepted in the same way, allowing fur-
ther actions of the replication protocol. For the

basic protocol no special actions are needed, and
request and response are simply forwarded. Let us
now examine what is required at the server side.
A request that is received by one server replica
should be reified (RequestReception) to the server
meta-level. If it is a connection request the replica
has to register the client. If it is a transaction re-
quest, it needs to be multicast to all replicas in to-
tal order where it will trigger transaction execu-
tion at the base-level of all servers as a form of
intercession. When the request processing is com-
pleted at the server base-level the result is reified
(SendReply) to the corresponding meta-level. This
is a further hook at which the replication algorithm
can apply the replication logic. For instance, for
the response to a transaction request, only the lo-
cal replica has to return the result to the client.
When looking at the optimistic algorithm, a
simple reflective mechanism at the database con-
nection level is not enough. Hence, we defer the
discussion of this protocol to the next sections.

4.1.2 Fault-tolerance

Howeyver, a reflective database connection can en-
hance our pessimistic protocol (and in a simi-
lar way the optimistic protocol), by providing the
right hooks to integrate fault-tolerance. A client
should stay connected to the replicated system
even if a replica fails. Ideally, the client itself is
not even aware of any failures but experiences an
uninterrupted service. Reflection at the connec-
tion level can achieve this. As mentioned before,
when a client wants to connect to the system, the
client meta-level can detect existing replicas and
connect to any of them. In a similar way, when
the replica to which the client is connected to fails,
the failure needs to be reified to the client meta-
level. Then, the meta-level can automatically re-
connect to a different replica without the client
noticing. For that the client meta-model has to do
extra actions when intercepting standard transac-
tion requests and their responses. A possible ex-
ecution can be outlined as follows. When it re-
ceives a request it tags it with a unique identifier
and caches it locally before forwarding the tagged
request to the server. If the meta-model receives
a failure exception or times out when waiting for
a response it can reconnect to another replica and
resubmit the request with the same identifier. The
server meta-model of each replica keeps track of
the last request and its response for each client us-
ing the request identifier. Hence, when it inter-
cepts a request, it first checks whether it is a re-

submission. If yes, it returns immediately the re-
sult. Otherwise, it is multicast and executed at all
replicas as described above. At least-once execu-
tion is provided by letting the client meta-level re-
submit outstanding request. At-most once is guar-
anteed by detecting duplicate submissions. Note
that the server meta-level has to remove the request
identifier from the request before the request is for-
warded to the base-level server in order to keep the
regular interface unmodified.

4.2 Reflective Requests

In the previous section, it was argued that with-
out information about the content of the requests
the replication logic was forced to use a read
all write all symmetric approach executing all re-
quests sequentially at all sites. That is, no con-
currency control is performed at the middleware
level. In order to enable more efficient replica-
tion protocols at the middleware level it is nec-
essary to have an additional meta-interface. This
meta-interface will enable to perform introspec-
tion on the request and might also provide ac-
cess to application-dependent knowledge on the
transaction access pattern. Therefore, this meta-
interface can offer information about transaction
requests with different levels of detail: 1) It can
classify the transaction as read-only or update; 2)
It can provide information about the tables that
are going to be accessed by the transaction and in
which mode, read or update; 3) It can determine
the conflict classes (application defined) to be ac-
cessed by the transaction.

Level 1 is offered, for in-
stance, by JDBC drivers through
SetConnectionToReadOnly. This in-

formation is exploited by replication middlewares
such as [2] and [35]. It is particularly helpful
in the case of primary copy replication. In this
case, the replication protocol can redirect update
transactions to the base level of the primary server
and read-only transactions to any other replica.
Levels 2 and 3 are used to implement concurrency
control at the middleware level. Level 2 can be
easily achieved through a SQL parser run at the
client (or server) metamodel as has been done
in [21]. Level 3 requires a meta-interface so
that application programmers can define conflict
classes and transactions can be attached the set
of conflict classes they access. Level 3 can be
exploited by conflict aware schedulers such as in
[32, 19, 5, 4, 12]. Middle-R [33] has an imple-
mentation of such interface. If levels 2 or 3 are

available, then our basic pessimistic protocol can
be extended. Instead of having one FIFO queue,
there can be queues for each table or conflict
class and requests are appended to the queues of
tables/classes they access. Hence, transactions
that do not conflict can be submitted concurrently
to the base-level.

4.3 Reflective Transactions

For the optimistic and asymmetric protocol pre-
sented in the previous section, however, reflec-
tive connections and requests are not yet enough.
Asymmetric replication requires to retrieve and ap-
ply writesets. While the optimistic concurrency
control could be achieved through reflective re-
quests, the coarse conflict granularity achieved at
this level (on a table or conflict-class basis) is
likely to lead to many aborts. Thus, in order for op-
timistic concurrency control to be attractive, con-
flicts should be detected on the tuple level. For this
purpose we need reflective transactions.

4.3.1 Writesets

In order to be able to perform asymmetric repli-
cation, the meta-model needs to be able to obtain
a writeset of a transaction from the base-level and
apply a writeset. The first request requires reifica-
tion, the second intercession.

The writeset contains the up-
dated/inserted/removed tuples identified through
the primary key. The meta-interface can adopt
three different forms. The first form provides the
writeset as a black box. In this case, the writeset
can only be used to propagate changes and apply
them at a different replica through the meta-
interface. The second form consists in a reflective
writeset providing an introspection interface itself.
This introspection interface enables to analyze the
content of the writeset, for instance, in order to
identify the primary keys of the updated tuples.
This is needed for our optimistic protocol to detect
conflicts. The third form offers a textual repre-
sentation of the writeset. Typically the textual
representation will be an SQL update statement
identifying the updated tuples with a primary key.
Though, other textual representations are possible,
like for instance, XML.With this, replication
could be across heterogeneous databases since
one could retrieve a writeset from a PostgreSQL
database and apply it to an Oracle instance.

The writeset meta-interface can be imple-
mented efficiently. At the time updates are physi-

cally processed at the database, the updates can be
recorded in a memory buffer. The meta-interface
just provides access to this buffer. A binary meta-
interface for PostgreSQL is used in [19, 21], an in-
trospective writeset meta-interface exists for Post-
greSQL 7.2 [26], and we have just completed a
textual one (as a SQL statement) for MySQL.

If the database itself does not provide writeset
functionality, it can be implemented through dif-
ferent means such as triggers [35]. This approach
has the advantage of not requiring the modifica-
tion of the database code. However, it has the
shortcoming of the high cost incurred by triggers.
Typically, each update of a data item triggers the
insert of writeset information into a special table.
Retrieving the writeset means reading what a spe-
cific transaction has inserted into this special table.
Thus, each update of a tuple in the original transac-
tion leads to two updates when writeset function-
ality should be provided.

4.3.2 Readsets

In order to perform the validation of our optimistic
replication algorithm, we also need the readset in-
formation. The readset meta-interface is similar to
the writeset one. The main difference is that for
the readset only the primary key of the read tuples
is needed. The implementation is also relatively
simple. Whenever a physical read takes place, the
primary key is recorded on a buffer. However, the
practicality of the approach is very questionable.
Writesets are usually small while readset can be-
come very large, e.g., if complex join operations
are used. Thus propagating readsets might be pro-
hibitive. Also, performing validation on readsets
can be very expensive. Therefore, although the
readset can be supported at the meta-interface, in
general, very few protocols use it.

4.4 Reflective Log

The log of a database registers the undo and
redo records to guarantee transaction atomicity.
Redo records are in fact a form of a writeset. A
reflective log provides an introspection interface
that enables to analyze the records written to it by
each transaction. Although conceptually similar to
the writeset approach presented above, there is a
very important difference. Writesets with the pre-
vious meta-interface are obtained before transac-
tion completion, whilst in a reflective log only the
writeset of committed transactions is usually ac-
cessible. This difference prevents the use of the

reflective log approach for eager replication. This
is particularly true if the writeset is needed for con-
flict detection which has to happen before transac-
tion commit in eager protocols. Another implica-
tion of reflective logs is that access to the log is
done by reading the log file. Since the log file is
typically stored in a separated disk for efficiency
reasons (so the head is always on the right track),
the access by the replication middleware to the log
file will reduce the benefits of this optimization by
occasioning head movements.

Reflective logs are already provided by
some commercial databases such as Microsoft
SQLServer, Oracle, and IBM DB2. This
reflective interface is usually known as log
sniffer/reader/mining. Log sniffers are usually
used for lazy replication in which updates are
propagated as separate transactions.

4.5 Reflective Concurrency Con-
trol

The last reflective meta-interface we explore is
the one related to concurrency control. The first
possibility that one can consider is to have a full-
fledge meta-model of concurrency control. For
a locking concurrency control every lock request
would be reified to the meta-model giving it op-
portunity to keep track of actual conflicts and wait-
for relationships. Lock releases due to transaction
abortion or commitment would be reified as well,
so the meta-model can keep the information up-
to-date. This meta-model would be very powerful
but unfortunately it is very expensive, since a very
high number of lock requests and releases take
place during a transaction. Hence, this approach
is inefficient and complex to implement. There-
fore, it is necessary to resort to slim meta-models
with lower overheads.

For this, one has to understand what is really
needed by the middleware level. In asymmet-
ric schemes a transaction is first executed at one
replica and then at the others. Two transactions
that are executed locally at one replica are typically
scheduled by the concurrency control mechanism
of this local base-level database system. How-
ever, conflicts between transactions that are local
at different replicas can only be detected optimisti-
cally when the writeset of one of the transaction
arrives at the other replica. Typically, the transac-
tion whose writeset arrives first (e.g., in total order)
may commit, the other has to abort. This means,
a local transaction should abort when a conflicting
writeset arrives. For this to happen, however, the

middleware (1) needs to know about the conflict
and (2) be able to enforce an abort. [26] discusses
how these things are difficult to achieve in a black
box approach, slowing down the replication mech-
anism. Two simple meta-level interface functions
could simplify the problem.

4.5.1 Conflict Reification/Introspection

A minimum interface could provide the meta-
model information about blocked transaction. One
possibility could be reify the blocking of trans-
actions (a callback mechanism) such that when a
SQL request is made to the database and the trans-
action becomes blocked on a lock request the base-
level automatically informs the meta-level about
this blocking and the transaction that caused the
block (i.e., the one holding a conflicting lock).
This enables the meta-level to detect whether a
writeset is blocked on a local transaction. Al-
ternatively to a reification mechanism, the meta-
level might use introspection via a get-blocked-
transactions method to retrieve information about
all blocked transactions. This method can be eas-
ily implemented in PostreSQL 7.2 in which there
is a virtual view table with the transactions blocked
awaiting for a lock release and a SELECT state-
ment could be use for this purpose.

4.5.2 Indirect Abort

A second mechanism that is needed is to enable
the abort of a transaction at random times. Usu-
ally, a client cannot enforce the abort of a trans-
action in the middle of execution of an operation.
Instead, clients can usually only submit abort re-
quests when the database expects input from the
client, i.e., when it is not currently executing a re-
quest on behalf of the client. However, in the case
described above, the replication protocol might
need to abort a local transaction at any time. A
meta-interface offering such indirect abort would
provide a powerful intercession mechanism to the
meta-model.

4.5.3 Lock Release Intercession

A transaction usually releases all locks at com-
mit/abort time. Different lock implementations
use different mechanisms to grant the released
locks to waiting transactions. Lock requests could
be waiting in a FIFO or other priority queue. Alter-
natively, they could be all waken up and given an
equal chance to be the next to get the lock granted.

However, the replication protocol might like to
have its own preference of whom to give a lock,
for instance, to guarantee the same locking order
at all replicas. Hence, any intercession mecha-
nism such as giving access to the priority queue
or allowing the meta-level to decide in which or-
der waiting transactions should be waken up will
be useful.

4.5.4 Priority Transactions

Another option to enforce an execution order on
the base-level would be a form of indicating a pri-
ority level to a transaction. The simplest solu-
tion consists in providing a simple extension of
the writeset interface that forces the database to
apply the writeset in spite of existing conflicting
locks. In case that a tuple contained in the writeset
is blocked by a different transaction, the database
aborts this transaction giving priority to the trans-
action installing the writeset. This could allow
the replication middleware to enforce the same se-
rialization order at all replicas. More advanced,
transactions could be given different priority lev-
els. Then the base-level database would abort a
transaction if it has a lock that is needed by a trans-
action with a higher priority. In this case, local
transaction could be given the lowest priority, and
writesets a higher priority.

5 Evaluation

In this section we aim at providing an evalua-
tion of the cost of the reflective writeset functional-
ity, since it has shown to have a tremendous effect
on performance [20]. We consider a wide num-
ber of mechanisms to capture the writeset. Our
first two implementations are true extensions of
the database kernel, and they capture the write-
set either in binary or in SQL textual form. Fur-
thermore, we have implemented a trigger based
writeset capture, and a log based writeset capture,
both of them return the writeset in SQL text for-
mat. The binary writeset capture has been imple-
mented in PostgreSQL and was used by Middle-R
[19, 33]. The SQL text writeset capture has been
implemented in MySQL. The trigger and log based
writeset capture were implemented in a commer-
cial database !.

For applying writesets at remote replicas, we
have two implementations. One uses the binary

IThe license does not allow to benchmark the database nam-
ing it.

writeset provided by the binary writeset capture
service, the other requires as input a writeset with
SQL statements (as provided by the SQL text
writeset capture service and the trigger and log
based captures).

Since the different reflective approaches were
implemented in different databases we show the
results separately for each database. We compare
the performance of a regular transaction execution
without writeset capture with the performance of
the same database with writeset capture enabled.
This allows us to evaluate the overhead associated
with the writeset capture mechanism.

A similar setup is used for evaluating the costs
of applying a writeset. In here, we compare the
cost of executing an update transaction with the
cost of just applying the writeset of the transac-
tion. This enables to measure what is gained by
performing asymmetric processing of updates.

Finally, to show the effect of the different al-
ternatives to capture and apply writesets we derive
analytically the scalability for different workloads
and number of replicas.

5.1 The Cost of Reflective Writeset
Capture

Let us first look at the results of the reflective
mechanisms that are typically available in com-
mercial database systems, namely log and trig-
ger based reflection. We have implemented both
mechanisms in the same commercial database and
compared it to the baseline in this database. The
baseline is the execution of a transaction without
any capture enabled. The baseline therefore mea-
sures the performance of regular transaction ex-
ecution. For this kind of transaction the maxi-
mum throughput that can be obtained is about 45-
50 transactions per second. Its response time lies
between 35 ms under low load and 205 ms under
high load.

The writeset capture via the log mining facili-
ties exhibits a very bad performance. The through-
put drops to 3.5 transactions per second what
means a drop of over 90%. The response time
also worsens in the same line with a sharp increase
from 300 to 1400 ms. What is more, it collapses
for a number of clients beyond 5. The main rea-
son for this bad behaviour is that the capture of the
writeset using log mining creates a very high con-
tention in the log converting it into a bottleneck.

When capturing the writeset via triggers the be-
haviour is quite different. The throughput suffers
considerably and is basically halved, although not

Throughput

60
= without capture
- log capture

50 trigger capture

; //\f

20

Throughput (reg/sec)

1 2 3 4 5 6 7 8 9 10
Load (# of clients)

(a) Throughput
Response Time

—— without capture
1400 +— ~# log capture '
trigger capture

800 /

Response Time (ms)

Load (# of clients)

(b) Response time

Figure 3. Log Mining and Trigger
Writeset Capture for a Commercial
DB

as much as with log mining. The throughput loss
is around 55%. This cost for capturing the writeset
is very high and as we will see later will result in a
reduced scalability. Regarding the response time,
it behaves very well, and the transaction latency is
not significantly affected by the trigger capture.

The SQL writeset capture was implemented
within the MySQL kernel. The SQL writeset
capture has a more moderate cost, resulting in
an affordable burden. With respect the maxi-
mum attainable throughput, the peak for the reg-
ular MySQL without capture was over 330 tps,
whilst with the SQL writeset capture enabled the
peak went down to 220, that means a throughput
loss of 33%. If we consider the throughput with
4 clients or beyond, the loss is smaller. MySQL
without capture stabilizes in 170 tps, whilst the
SQL capture version goes down to 120 tps. The
drop in throughput in this case is slightly smaller,
around 30%. When the load is close to the satu-
ration point of MySQL, the SQL capture version
collapses dropping to a marginal throughput of 60
tps.

The response time of MySQL without capture

Throughput

350
300 //\\
250

200 /}\

= without capture|
8- sql capture

aN

Throughput (reg/sec)

Load (# of clients)

(a) Throughput

Response Time

—+— without capture
140 -~ sql capture —

~

o 3
2 8
™~

Response Time (ms)
a>
3

Nooa
S S

o

Load (# of clients)

(b) Response time

Figure 4. SQL Writeset Capture for
MySQL

starts at around 8 ms and stabilizes at around 50
ms with high loads. The SQL writeset capture per-
forms reasonably well. With mild loads up to 6
clients the response time remains very close to the
one of regular MySQL. When going close to the
saturation point the response time starts to increase
rapidly reaching 140 ms for high loads.

The binary writeset capture has been imple-
mented in PostgreSQL. The throughput of Post-
greSQL without capture was around 11 tps. When
enabling the binary capture, the throughput re-
mained almost the same without any significant
impact. With respect to response time PostgreSQL
had a response time of 200 ms with up to two si-
multaneous clients, and it increased linearly with
the number of clients till 900 ms. The binary write-
set capture showed the same behaviour as the ver-
sion without capture. This means that the binary
writeset capture resulted in a negligible cost, what
is the base to attain a high scalability. Although
the version of PostgreSQL used in this experiment
achieved generally a very low throughput we do
not expect the binary writeset capture to behave
worse for higher throughputs since it is a very lo-
cal task which is not affected by more concurrency

Throughput

Throughput (req/sec)
o o

2 ——without capture]
8- binary capture
trigger capture
1 2 3 4 5 6 7 8 9 10
Load (# of clients)
(a) Throughput
Response Time

1000 ~
—— without capture

800 trigger capture
g 700 /-
g 600 /
i,,:, 500 /
£ 40 __
2 300 /
& /
200
100
o —

Load (# of clients)

(b) Response time

Figure 5. Binary Writeset Capture for
PostgreSQL

in the system.

In summary, trigger and log-based reflection
turned out to be too heavyweight with an unac-
ceptable cost in the case of log mining and a very
high cost in the case of triggers. The reflective
services implemented in MySQL and PostgreSQL
have shown to be very lightweight with a quite af-
fordable cost, the binary writeset capture exhibit-
ing an extremely low overhead.

5.2 The Gain of Reflective Writeset
Application

In here we evaluate the gains of applying write-
sets compared to executing the entire transaction.
We evaluate two approaches, namely applying bi-
nary writesets and SQL writesets. SQL writesets
are obtained by most of the capture mechanisms
evaluated in the previous section. Binary writesets
are only captured with the binary writeset reflec-
tive service. We use PostgreSQL for this evalua-
tion since it is the only one in which we have im-
plemented both kinds of writeset application.

Figure 6 shows the performance of fully execut-
ing transactions in PostgreSQL, and applying the

Throughput

== normal execution

350 A -8 ws-bin application
/" \ ws-sql application
5 300
o
3 e \
fg 250 \
5 200
2
£ \-\
2 150 +—
8 \M\H\.
£ 100 - ——
50
0+—t——
1 2 3 4 5 6 7 8 9 10
Load (# of clients)
(a) Throughput
Response Time
1000
900 == normal execution
-8 ws-bin application
800 ws-sql application ‘ /
E 700 W~
2 e —
= 500 _
é 400 /
8
g 300 /
o
200
100 —_——
MET—
0l n N T

Load (# of clients)

(b) Response time

Figure 6. SQL and Binary Writeset
Application for PostgreSQL

SQL writesets, and the binary writesets. Applying
writesets achieves higher throughputs than execut-
ing normal transactions. The application of SQL
writesets reaches a peak of 345 tps and the appli-
cation of binary writesets a peak of 362 tps. These
peaks are reached when there are around 3 clients
submitting writesets concurrently. When there are
more clients, the achievable throughput lies be-
tween 170-100 tps for SQL writesets, and between
210-115 tps for binary writesets. This means that
binary writesets can obtain a throughput between
5-20% higher than SQL writesets. Furthermore,
applying writesets can achieve throughputs that are
100-350 times higher than executing the update
transactions.

With regard response time, a similar situation is
found. The response time for full execution of up-
date transactions in PostgreSQL lies between 170
and 900 ms. Again in stark contrast, the writet ap-
plications show a much better performance with
response times lying between 7 and 100 ms. That
is, a reduction of a 90-95% is obtained in the re-
sponse time.

5.3 Analytical Scalability of Differ-
ent Reflective Approaches

In the two previous sections we have evalu-
ated the relative cost of capturing and applying
the writeset with different reflective mechanisms.
In this section we extend the analytical model for
database replication scalability presented in [20] to
consider the cost of capturing the writesets, since
in that analytical model that cost was considered
negligible (what is accurate for binary writesets)
and only took into account the ratio between the
application of the writesets and the full transaction
execution.

Let L be the total processing capacity of the
system, i.e., the maximum number of transactions
per time unit that can be handled by the aggre-
gation of all sites. Let L,, = w - L and L, =
(1 — w) - L be the load created by update and
read transactions, being w the proportion of update
transactions in the load. Let ¢ be the processing ca-
pacity of a single site in terms of transactions per
time unit. ¢ and L exhibit the following relation:

t=Py - Ly+PL,=L-(w Py+(1—w)-P)

Where P, and P, are the probabilities of exe-
cuting a read and a write operation.

The global scalability of a replicated system is
given by the total processing capacity of the entire
system (L) divided by the processing capacity of
one site (¢):

SO0 —

L 1
t w-Py,+(1—-w)- P
Taking into account that writes are processed
asymmetrically the probability for a site to exe-
cute a write transaction can be split into: P, =
PL 4 PE where PL is the probability of being
the site fully executing the write transaction (local
site for the transaction) and P is the probability
of applying the writeset of an update transaction
(remote site for the transaction). Then, we need
to distinguish the cost of fully executing an update
transaction, which is considered to be 1, the cost
of fully executing the transaction including captur-
ing the writeset by means of a particular mecha-
nism, which we denote as writeset capture over-
head or wco, and the cost of applying the write-
set, which we denote as writeset application over-
head or wao. As seen before, for asymmetric sys-
tems, wco > 1 and 0 < wao < 1. In contrast,
wco = wao = 1 represents a symmetric system.

== "Commercial DB/ Trigger capture”
18 { & "Commercial DB/ Log capture”
-= "MySQL/SQL Capture"

- "PostgreSQL/Binary Capture”

\
i\

of replicas

(a) w=0.25

=+ "Commercial DB/ Trigger capture”
18 { & "Commercial DB/ Log capture”

| -=-"MysaL/saL Capture”
=#="PostgreSQL/Binary Capture" /

Scalability
5

of replicas

(b) w =0.50

=+ "Commercial DB/ Trigger capture"
18 4~ "Commercial DB/ Log capture"
-&"MySQL/SQL Capture"

= "PostgreSQL/Binary Capture"

Scalability

of replicas

(@) w=0.75

== "Commercial DB/ Trigger capture"
18 { & "Commercial DB/ Log capture"
-&-"MySQL/SQL Capture”

= "PostgreSQL/Binary Capture”

Scalability
3

8 M e
6 M_W
4 MM

s e aal

ke h—h—k—k

Ak

0 2 4 6 8 10 12 14 16 18 20
of replicas

(b)yw=1

Figure 7. Scalability for the Different
Reflective Writeset Handling Mecha-
hisms

With this the scalability, sc of a replicated

system is:

SC =

% = 'w~'wco~P,f+w~w;o~Pf+(1—w)~Pr

We can know feed the analytical model with
different values of wco and wao extracted from
the experimental evaluation performed in the pre-
vious sections. wco is obtained as the ratio be-
tween the maximum throughput with writeset cap-
ture enabled and the maximum throughput for reg-
ular transaction execution. Similarly, wao is com-
puted as the ratio between the maximum through-
puts of writeset application and regular transac-
tion execution. The computation of these values
is made for each implemented reflective writeset
mechanism in the different DBs. The so obtained
computed values of wao and wco are summarized
in Figure 8.

DB and Reflective Mechanism WCO W30
PostgreSQL binary capture 1.037845
PostgreSQL binary application 0.032181
PostgreSQL SQL application 0.033856
Commercial DB trigger capture | 2,160964

Commercial DB logreader capture | 13.35062

My50L SAL caplure 1.508986

Figure 8. Empirical values of writeset
capture and application overheads

In Figure 7 we can find the scalability of the
different approaches if the percentage of write op-
erations is 25%, 50%, 75% and 100%. The graph
shows in the y-axis the relative power of the repli-
cated system compared to a non-replicated sys-
tem, that is, how many times the throughput of a
replicated system multiplies the throughput of a
centralized non-replicated system. For instance,
a value of 10 in the y-axis, means that the max-
imum throughput is 10 times the one of a single
non-replicated site. The x-axis shows the number
of replicas. Since all the graphs are relative, it does
not matter that the curves might belong to different
databases.

The first observation is that the higher the value
of w (percentage of update transactions) the more
noticeable the difference among the different ap-
proaches. This is intuitive since, the more updates,
the more impact has how efficiently they are han-
dled. When comparing all the approaches, it be-
comes clear that the log mining approach is not an
alternative for database replication. Trigger-based

writeset capture pays the cost of a heavy weight
reflective mechanism. However, it has the advan-
tage that it can be implemented as database appli-
cation, and hence, does not require changes to the
database kernel code. Finally, the two reflective
services implemented within the database kernel
have the best scalability. Their scalability is very
competitive. In the case of SQL capture, the scala-
bility is somewhat lower, since capturing the write-
set requires some additional processing for gener-
ating the SQL statements. Secondly, there is also
the slightly higher cost for applying the writeset
that has also some impact on scalability.

If we compare the binary writeset service ap-
proach with the others, we can see that for 20 repli-
cas, it provides 10-23% more scalability than the
SQL writeset service approach. With respect to
the trigger approach, it has 20-41% better scalabil-
ity. Finally, it beats the log mining approach with
an enhancement in scalability of 73-88%.

6 Related Work

Reflection has become a popular paradigm to
introduce non-functional concerns with a clean ar-
chitecture without tangling the code of the regu-
lar functionality. In the last decade a number of
approaches have been taken to introduce reflec-
tion in middleware such as OpenORB [9] and Dy-
namicTAO [25] to disentangle the implementation
of nonfunctional cross-cutting concerns from the
implementation of the functional aspects. Some
new component-based middlewares have been de-
signed from the very beginning to provide reflec-
tive components that can be composed into new
reflective components [30].

Reflection to introduce transactional semantics
has been explored by some researchers. Early ap-
proaches relied simply on inheritance (without re-
flection) to provide flexible transactional seman-
tics [37]. [6] extends a legacy TP-monitor with
transactional reflective capabilities to implement
advanced transaction models at the meta-level.
[41] exploits a reflective Java for introducing trans-
actionality in a declarative fashion for component-
based systems.

[1] is a seminal paper on dependability through
reflection. The paper takes advantage of reflec-
tion in an actor-based language to implement de-
pendable protocols. [17] is also one of the early
approaches to implement fault-tolerance exploit-
ing reflection. This paper explores how to per-
form process replication in three different flavors,

active, semiactive and passive, utilizing linguistic
reflection in object oriented languages, that is, by
means of a meta-object protocol. The use of MOPs
to implement fault-tolerant CORBA systems has
been studied in [29, 18]. More recently, reflective
design patterns have been studied for implement-
ing fault tolerance [27]. Another important topic
that has been studied in the context of implement-
ing fault-tolerance adoptive reflective approaches
is what happens in complex systems such as a mid-
dleware on top of operating systems [38].

7 Conclusions

In this paper we have proposed a wide set of
lightweight reflective mechanisms for databases
that enable to perform replication at the middle-
ware level. These mechanisms have explored all
the main functionalities of the database, database
connectivity, request handling, concurrency con-
trol and logging. Some of the reflective mech-
anisms are already widely used, others are quite
novel and an efficient implementation would be
very useful for middleware based replication.
From there, a thorough comparison, both empir-
ically and analytically, of different implementa-
tions for writeset capture and application has been
performed, since this reflective mechanism has
proven to have a high impact on the scalability
of database replication. The main conclusion has
been that the most promising reflective mecha-
nisms are those that capture the writeset within the
database kernel either in binary of SQL form.

References

[1] G. Agha, S. Frolund, R. Panwar, and D. Sturman. A
Linguistic Framework for Dynamic Composition
of Dependability Protocols. In Proc. of DCCA-3,
1993.

[2] Y. Amir and C. Tutu. From Total Order to Database
Replication. In /ICDCS, 2002.

[3] C. Amza, A. L. Cox, and W. Zwaenepoel. Scaling
and Availability for Dynamic Content Web Sites,
2002.

[4] C. Amza, A. L. Cox, and W. Zwaenepoel. Conflict-

aware scheduling for dynamic content applications.

In USITS, 2003.
[5] C. Amza, A. L. Cox, and W. Zwaenepoel. Dis-

tributed versioning: Consistent replication for scal-
ing back-end databases of dynamic content web

sites. In Middleware, 2003.
[6] R.S.Bargaand C. Pu. A Reflective Framework for

Implementing Extended Transactions. In S. Jajodia
and L. Kerschberg, editors, Advanced Transaction

Models and Architectures, pages 63-89. Kluwer

Academic Press, 1997.
[7] H. Berenson, P. Bernstein, J. Gray, et al. A critique

of ANSI SQL isolation levels. In SIGMOD, 1995.
[8] P. A. Bernstein, V. Hadzilacos, and N. Goodman.

Concurrency Control and Recovery in Database

Systems. Addison, 1987.
[9] G. S. Blair, G. Coulson, A. Andersen, et al. /IEEE

Distributed Systems Online, 6(2), 2001.
[10] Y. Breitbart, R. Komondoor, R. Rastogi, S. Se-

shadri, and A. Silberschatz. Update propagation
protocols for replicated databases. In ACM SIG-
MOD, 1999.

[11] Y. Breitbart and H. F. Korth. Replication and con-
sistency: Being lazy helps sometimes. In ACM
PODS, 1997.

[12] E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-
JDBC: Flexible database clustering middleware. In
USENIX, 2004.

[13] G. V. Chockler, I. Keidar, and R. Vitenberg. Group
communication specifications: A comprehensive

study. ACM Computer Surveys, 33(4), 2001.
[14] S. Elnikety, W. Zwaenepoel, and F. Pedone.

Database replication using generalized snapshot

isolation. In SRDS, 2005.
[15] S. Gancarski, H. Naacke, E. Pacitti, and P. Val-

duriez. Parallel Processing with Autonomous
Databases in a Cluster System. In Proc. of

CooplS/DOA/ODBASE, pages 410-428, 2002.
[16] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The

dangers of replication and a solution. In ACM SIG-

MOD, 1996.
[17] J-C. Fabre, V. Nicornette, T. Pérennou, R. J.

Stroud, and Z. Wu. Implementing Fault Tolerant
Applications using Reflective Object-Oriented Pro-

gramming. In Proc. of FTCS, 1995.
[18] J-C. Fabre and T. Pérennou. A Metaobject Archi-

tecture for Fault-Tolerant Distributed Systems: the
FRIENDS Approach. IEEE Transactions on Com-
puters, 47:78-95, 1998.

[19] R. Jiménez-Peris, M. Patifio-Martinez, and
G. Alonso. Non-intrusive, parallel recovery
of replicated data. In IEEE Symp. on Reliable

Distributed Systems (SRDS), 2002.
[20] R. Jiménez-Peris, M. Patifio-Martinez, G. Alonso,

and B. Kemme. Are quorums an alternative for
data replication. ACM Transactions on Database
Systems, 28(3), 2003.

[21] J.M. Milan, R. Jiménez-Peris, M. Patifio-Martinez,
and B. Kemme. Adaptive middleware for data

replication. In Middleware, 2004.
[22] B. Kemme and G. Alonso. Don’t be lazy, be

consistent: Postgres-R, a new way to implement

database replication. In VLDB, 2000.
[23] B. Kemme and G. Alonso. A new approach to de-

veloping and implementing eager database replica-

tion protocols. ACM TODS, 25(3), 2000.
[24] B. Kemme, F. Pedone, G. Alonso, and A. Schiper.

Processing Transactions over Optimistic Atomic

Broadcast Protocols. In ICDCS, 1999.
[25] F. Kon, M. Romdn, P. Liu, T. Yamane, L. C. Mag-

alhaes, and R. H. Campbell. Monitoring, Security,

and Dynamic Configuration with the DynamicTAO

Reflective ORB. In Middleware, 2000.
[26] Y. Lin, B. Kemme, R. Jiménez-Peris, and

M. Patifio-Martinez. Middleware based data repli-
cation providing snapshot isolation. In SIGMOD,
June 2005.

[27] L.L.Ferreira and C.M.F. Rubira. Reflective design

patterns to implement fault tolerance. In OOPSLA

Workshop on Reflective Programming, 1998.
[28] P. Maes. Concepts and Experiments in Computa-

tional Reflection. In Proc. of Int. Conf. on Object-
Oriented Programming Systems, Languages and
Applications (OOPSLA), 1987.

[29] M.O. Killijian, J-C. Fabre, J.C. Ruiz-Garcia, and
S. Chiba. A Metaobject Protocol for Fault-Tolerant
CORBA Applications. In SRDS, 1998.

[30] ObjectWeb. Fractal, http://fractal.objectweb.org.

[31] E. Pacitti, M. T. Ozsu, and C. Coulon. Preventive
multi-master replication in a cluster of autonomous

databases. In Euro-Par, 2003.
[32] M. Patifio-Martinez, R. Jiménez-Peris, B. Kemme,

and G. Alonso. Scalable Replication in Database
Clusters. In Proc. of Distributed Computing Conf.,
DISC’00. Toledo, Spain, volume LNCS 1914,

pages 315-329, Oct. 2000.
[33] M. Patifio-Martinez, R. Jiménez-Peris, B. Kemme,

and G. Alonso. MIDDLE-R: Consistent database
replication at the middleware level. ACM Transac-
tions on Computer Systems, 23(4):375-423, Nov.

2005.
[34] F. Pedone, S. Frolund, R. Guerraoui, and

A. Schiper. The Database State Machine Ap-
proach. Distributed and Parallel Databases, 14(1),

2003.
[35] C. Plattner and G. Alonso. Ganymed: Scalable

replication for transactional web applications. In

Middleware, 2004.
[36] L. Rodrigues, H. Miranda, R. Almeida, J. Martins,

and P. Vicente. Strong Replication in the Glob-
Data Middleware. In Workshop on Dependable
Middleware-Based Systems (part of DSNO2), pages

503-510, 2002.
[37] S. K. Shrivastava, G. N. Dixon, and G. D. Par-

rington. An Overview of Arjuna: A Programming
System for Reliable Distributed Computing. /EEE

Software, 8(1):63-73, Jan. 1991.
[38] F. Taiani, J-C. Fabre, and M-O. Killijian. Towards

Implementing Multi-Layer Reflection for Fault-
Tolerance. In Proc. of the Int. Conf. on Dependable
Systems and Networks (DSN), San Francisco, June

2003.
[39] M. Wiesmann, A. Schiper, F. Pedone, B. Kemme,

and G. Alonso. Database replication techniques: A

three parameter classification. In SRDS, 2000.
[40] S. Wu and B. Kemme. Postgres-R(SI): Combining

replica control with concurrency control based on

snapshot isolation. In /EEE ICDE, 2005.
[41] Z. Wu. Reflective Java and a reflective component-

based transaction architecture. In ACM OOP-
SLA’98 Workshop on Reflective Programming in
Java and C++, 1998.

