
ZenFlow: A Visual Web Service Composition Tool for BPEL4WS∗

Alberto Mart́ınez, Marta Patĩno-Mart́ınez, Ricardo Jiḿenez-Peris, Francisco Pérez-Sorrosal
Facultad de Inforḿatica

Universidad Polit́ecnica de Madrid (UPM), Spain
{amartinez,fpsorrosal}@zipi.fi.upm.es,{mpatino,rjimenez}@fi.upm.es

Abstract

Web services have become a very powerful technology
to build service oriented architectures and standardize the
access to legacy services. Through web service composition
new added value web services can be created out of existing
ones. Examples of these compositions are virtual organiza-
tions, outsourcing, enterprise application integration, busi-
ness process definitions and business to business inter/intra-
enterprise relationships. In order to enable the construction
of business processes as composite web services, a num-
ber of composition languages has been proposed by the
software industry. However, the handiwork of specifying
a business process with these languages through simple text
or XML editors is tough, complex and error prone. Visual
support can ease the definition of business processes. In
this paper, we describe ZenFlow, a visual composition tool
for web services written in BPEL4WS. ZenFlow provides
several visual facilities to ease the definition of a business
process such as multiple views of a process, syntactic and
semantic awareness, filtering, logical zooming capabilities
and hierarchical representations.

1. Introduction

Service oriented architectures (SOA) define systems that
allow the linking of resources on demand. SOA resources
are available in the network as independent services. This
provides a more flexible loose coupling of resources than in
traditional systems architectures.

Web service technology is nowadays the most well-
known connection technology for implementing SOA. Web
services allow loosely coupled interaction between services
implemented by different vendors. This is possible because
the interface provided by web services is defined in terms

∗This work has been partially supported by the European Commis-
sion under the Adapt project grant IST-2001-37126 and by the Spanish
Research Council (MEC) under grant TIN2004-07474-C02-01.

of an XML-based language called WSDL [18]. Today, busi-
ness to business (B2B) relationships are one of the most im-
portant areas for companies. If companies expose their ser-
vices through web service technology, these services may
be integrated in business processes and B2B relationships,
defined inside and outside organizations. However, it is
not easy to define a business process out of invocations to
web services. In order to abstract the applications from the
structure of processes, some kind of composition language
for the business processes definition is needed. In the last
few years, the software industry has proposed several XML-
based composition languages for web services: BPML [3],
XLANG [12], WSFL [9], WSCDL [17], BPEL4WS [8], . . .
But, even with these composition languages, it is still hard
for designers to define business processes by hand with the
only help of an XML editor.

In this paper we present ZenFlow, a visual web service
composition tool. ZenFlow is a full system for the compo-
sition and execution of web services. This paper focuses
on the visual facilities to navigate and edit business pro-
cesses. The visual composer of ZenFlow is a multi-view
graphical editor that is aware of the syntax and semantics of
the composition language, BPEL4WS. The multiple views
enhance the productivity of process designers by enabling
the editing and navigation on the most appropriate view.
All the views are synchronized and have the same notion
of the editing focus. The user of ZenFlow may choose to
filter some process elements in order to simplify the visual
representation of a process. Zoom facilities and hierarchi-
cal representation of a process are also available. The lan-
guage awareness enables the ZenFlow composer to enforce
the syntactic integrity of the process being edited. ZenFlow
supports sophisticated visual editing operations that guar-
antee process consistency throughout the editing process.
For instance, parts of a graphical process may be cut and
pasted somewhere else. Both the cut and paste operations
check the syntax before being effective in order to prevent
syntactic errors. The visual composer has been designed to
enable both bottom-up and top-down web service composi-
tion. In the bottom-up approach the designer builds the pro-



cess step by step adding web service invocations till com-
pleting the process definition. Our visual composer eases
this task through a visual UDDI browser that can connect
to any UDDI repository (standard web service directory)
through its web service interface. The UDDI browser al-
lows the visual navigation of the contained web services.
In the top-down approach the designer starts from a process
only representing the choreography of external web services
and enriches it with the internal business logic.

The rest of paper is structured as follows. Section 2
presents an introduction to web service technology and
composition of web services. A summary of the features
of the composition language BPEL4WS is found in Section
3. Section 4 presents a description of the visual composer
of ZenFlow. Section 5 compares ZenFlow with related ap-
proaches. Finally, conclusions are presented in Section 6.

2. Web Service Technology

A web service is a self-described application that can be
published and accessed through the web. The basic building
blocks of web services are WSDL, SOAP and UDDI.

The description of a web service is done using the WSDL
language [18]. WSDL exposes the service interface. SOAP
[19] provides the communication layer based on XML to
access web services. Publication and discovery of web ser-
vices are made through UDDI repositories [16]. An UDDI
repository is a web service catalogue. There are several
toolkits to develop and deploy applications as web services,
like AXIS[1], Java WSDP[15] or .NET[11]. Legacy ser-
vices can be wrapped using any of these systems in order to
provide a web service interface.

Web services can be either basic or composite. Basic
web services do not rely on any other web service. On the
other hand, composite web services invoke other web ser-
vices. They are structured in a workflow-like fashion. Com-
posite web services are used among other things to model
business processes. This is a graph structure where the
nodes are modelled as activities. The arrows of the graph
represent the relations between the activities. Activities rep-
resent tasks to be performed in the process.

Business processes may become fairly complex. They
may involve many activities and complex relationships be-
tween them. Moreover, business processes usually have to
be updated and evolve over time in order to adapt to chang-
ing requirements. In general, process designers only have
XML editors to maintain the business processes defined by
means of XML-based composition languages. Without the
appropriate tools, the task of maintaining a business process
may become a tough task.

3. BPEL4WS

The Business Process Execution Language for Web Ser-
vices (BPEL4WS or just BPEL) is a language for business
process specification based on web service composition.
Today, BPEL is a de facto standard language for web ser-
vice composition that is powerful enough to define complex
business processes [21].

A BPEL process defines the implementation of a web
service that can invoke other web services. There are two
main parts in a BPEL process description: thedefinitions
part and theprocess descriptionpart. The definitions part
exposes a WSDL of the process being defined. So, the
process is a web service. In this section, the relationships
between the process and other web services are described.
A BPEL process uses partners to represent web services a
process interacts with. The roles played by each service are
defined usingservice link types.

The process description section defines the structure of a
BPEL process. The process itself is specified by means of
its constituent activities. The activities can be simple (can-
not be decomposed) or complex (allow the nesting of other
simple or complex activities).

Simple activities allow the invocation of an operation
on a web service (invoke), processing an operation invo-
cation (receive), generate a response for an operation (re-
ply), copy data from one place to another (assign), excep-
tion raising (throw), wait an interval of time (wait) and ter-
minate the process instance (terminate). On the other hand,
complex activities allow the definition of a sequence of ac-
tivities (sequence), case-like selection (switch), select-like
multi-reception (pick), loops (while), or concurrent activi-
ties (flow). BPEL allows the nesting of activities (scope)
inside a process.

BPEL provides two mechanisms to deal with errors dur-
ing the process execution: exceptions and compensations.
Exceptions are treated by means of the throw-catch blocks,
like in any other programming language. A compensating
action allows the process designer to implement actions that
make amends for the previously committed actions.

4. The ZenFlow Toolkit

The ZenFlow toolkit enables the visual composition and
execution of business processes based on BPEL. The visual
composer and the engine supporting the deployment and ex-
ecution of BPEL processes are both implemented in Java.
The visual composer can be run either as a standalone Java
application or as a plugin in the Eclipse platform [5]. The
visual composer is enriched with BPEL and WSDL com-
pilers as well as the corresponding code generators to fully
support BPEL processes.



4.1. Environment Overview

The programming environment provided by the ZenFlow
visual composer looks like a classical programming envi-
ronment except in that it supports visual representation of
the business processes (Fig. 1). In addition to the menu
and toolbars located on the top, there are three main work-
ing areas (panes): the file explorer, the process design area
and the error pane. The file explorer is usually located on
the left side of the window. The file explorer shows all the
BPEL business processes currently open. The designer can
change the current process by selecting it in this view. All
other views are updated accordingly. Each BPELsyntactic
elementhas an icon that identifies it (BPEL visual element).
The toolbar offers a palette of BPEL visual elements. Each
visual element has an associated form with its definition.

The process design area is the main working area in Zen-
Flow. This area shows the visual representation and/or other
representations of a business process. For example, Figure
2 shows a split view of a process definition (graph + tree).
The visual representation consists of a flow chart view that
shows a BPEL process as a set of BPEL visual elements
representing data and control flow.

The visual composer generates a BPEL file and is
equipped with a BPEL compiler that enables to import, vi-
sualize and edit BPEL process descriptions. When Zen-
Flow reads a BPEL process description created with any
other tool, it might contain errors. The compiler checks
the syntactic and semantic correctness of the BPEL pro-
cess. During this process, an internal object representation
of the BPEL process is built. This internal representation
(the model in the Model-View-Controller jargon) is used to
support the visualization and editing of that process. The er-
ror pane (located at the bottom) shows the errors and warn-
ings in the process that is being developed.

4.2. Visualization and Navigation of Business Pro-
cesses

The implementation of the visual composer is based on
the Model-View-Controller (MVC) design pattern and in-
herently supports an arbitrary number of different views of
a business process. In this section, we examine this multi-
view support as well as other visualization facilities. Cur-
rently, ZenFlow supports five different views: flow chart,
form, text tree, error, free text, and execution. The flow
chart view is a graphical view of the control flow of a busi-
ness process (Fig. 1). The control flow is shown as a graph
in which there are activities and other BPEL syntactic el-
ements. They can be simple statements such as assign-
ments or web service invocations, or structured, such as
sequences or parallel execution activities. These syntactic
elements are connected among them with arrows represent-

ing the control flow. The visual composer provides auto-
matic layout support in order to visualize the flow chart as
a planar graph according to a set of aesthetic rules. One of
these aesthetic rules is that elements of a process are ver-
tically centred in a recursive fashion. Another rule is that
branches in flow statements (parallel execution construc-
tion) are aligned with respect to the minimum bounding
boxes of each branch. This means that the user can at-
tain automatically, without any effort, a high quality visu-
alization of a business process. Additionally, manual lay-
out is also allowed in order to provide the necessary degree
of flexibility. The user can move joints between activities,
then the activities are relocated according to the new joints.
The positions of the joints manually set are recorded till an
automatic layout is triggered by the user. Since syntactic
elements might have a high number of attributes, these at-
tributes are not presented in the flow chart view. Instead
they are accessible through the form view. The form view is
a dialog that provides access to all the attributes of a syntac-
tic element. The form can be presented as a pop-up dialog
or as a pane.

The text tree view provides a text view of a process (Fig.
2). This view is structured as a tree similar to XML edi-
tors, but it does not show the full XML text just a projection
with the most relevant elements of a BPEL process to ease
its navigation and readability. The root of the process is the
process itself. The branches of the root are the activities
in the process description. The contents of this view is syn-
chronized with all other views including the flow chart view.
Therefore, when the user switches views (or multiple views
are shown simultaneously) the focus is in the same point.
The programmer may add an operation in the flow chart and
switch to the text tree view to see the code inserted. Any
change done in any of the views is automatically updated in
the rest of the views. All views are just different visualiza-
tions of the same model and the focus of visualization is set
on the model, so it is unique for all views.

Syntactic and semantic errors are shown in the error view
(Fig. 3). There are two kinds of errors: warnings and syn-
tactic errors. Warnings are non-critical inconsistencies, and
they are shown in yellow. On the other hand, syntactic
errors are process definitions incompatible with the BPEL
syntax, and are identified in red. Errors can be filtered ac-
cording to different criteria to ease their processing. Zen-
Flow identifies two types of syntactic errors; those associ-
ated with the BPEL process itself or associated with WSDL
files. The error view provides a projection of the process in
which only the syntactic elements with associated errors are
shown. Errors are associated to the corresponding syntactic
elements. The error view is also synchronized with the other
views. So, clicking on this list the focus of the navigation
is changed in all other views resulting in the presentation
of the syntactic element in which the error has been found.



Figure 1. A business process

Figure 2. Tree and visual views of a process



Figure 3. The Error View

Figure 4. Abstract process definition

In some cases, it may be useful to be able to freely type
and edit the BPEL text without any constraint. The visual
composer supports this functionality through a text editor
in which the XML code of the BPEL process is shown and
can be freely modified. In this case, the consistency of the
BPEL process is not guaranteed. In this case, the text must
be saved and compiled after being edited in order to gener-
ate the associated views. If some error is found, it is shown
in the error view.

Finally, the ZenFlow BPEL engine is connected to the
visual composer to enable visual inspection and debugging
of running processes. The visualization is done in the flow
chart view. The path and activities already executed are col-
ored and the value of their parameters can be inspected.

4.3. Facilities for Enhancing the Scalability of Views

All views can be navigated through the panel scroll bars.
However, the scalability of scroll bars is known to be poor
[6], since it is easy to lose track of the context of the cur-
rent focus of the visualization. Some facilities have been
included in ZenFlow in order to improve the scalability of
the views, more particularly, the flow chart, text tree and ex-
ecution views. The first one is a syntactic filtering tool that
enables to select which activities should be shown in either
the flow chart or text tree views and which ones should be
hidden. For instance, the programmer may be interested
in just seeing web service invocations of the process under
development (e.g. to show only the web service choreogra-
phy) or all the parallel statements (e.g. to observe the pro-
cess concurrency). The filtering tool is accessed through a
dialog that allows the selection through check boxes of the
syntactic entities to be shown (e.g. web service invocations,
invocations to the process, sequence bracketing, etc.). This
filtering tool enables the projection of the visualized pro-
cess removing details that are not of interest at a particular
instant. These elements are shown as ellipsis in the graph-
ical view. The hidden elements can be shown again either
by using the same dialog or clicking in the flow chart in
that element. Figure 5 shows a simplified view (only basic
activities) of the process shown in Figure 2.

The error view also has a filtering tool that enables users
to restrict the set of errors shown according to different cri-
teria (severity, group of syntactic elements, etc.). This also
helps the designer to focus only on the errors that she is
tackling at the moment.

The abstraction tool is another facility targeted to en-
hance the scalability of these views. The abstraction tool
enables to group and name a bunch of connected activi-
ties, as it happens with procedures and complex statements
in imperative programming languages. Groups can also be
nested. This grouping enables to define different levels of
abstraction on the process definition. In this way, it becomes
possible to fold (zoom in) and unfold (zoom out) to any
level of depth each particular group by just clicking on it.
For instance, the view in Figure 4 is an abstract definition
of a process to book a holiday with three tasks: hotel, air-
line ticket and car booking. The BPEL code of the airline
ticket task is shown just clicking in that task (Fig. 1). Fig. 6
shows the complete BPEL process after unfolding the other
two tasks. This facility enables the navigation of a BPEL
process at different levels of abstraction and to have a higher
level of detail on the current focus of the navigation and a
fading detail on the rest of the process. It is possible both to
have the necessary detail on the current focus of the naviga-
tion and lower level of detail around the focus providing the
context of the focus. This enables a kind of manual logical
fish-eye views. This support is the base for future automatic



Figure 5. Visual representation of a process

Figure 6. Holiday reservation BPEL process



fish-eye view facilities [6] that will fold and unfold auto-
matically the different groups of activities depending on the
distance to the current foci of interest.

4.4. Drag and Drop Visual Composition of Business
Processes

The ZenFlow visual composer is based on the aforemen-
tioned visualization and navigation facilities. When navi-
gating a process it can be updated and extended as needed.
The navigation focus is therefore, also the editing focus.
This focus plays the same role of cursors.

The composer has a palette in the menu with all the activ-
ities that can be used in a BPEL process. The user just needs
to drag the appropriate activity from the palette and drop it
on the process being edited in either the flow chart view or
the text tree view of the process design area. In both cases,
the programmer is freed from typing the whole activity, she
just types the information that depends on the process (e.g.
the name and parameters of a web service invocation but,
not the invoke syntax).

The visual composer was designed to support two styles
of business process composition: bottom-up and top-down.
Bottom-up composition consists in building business pro-
cesses from scratch activity by activity. Under this com-
position style structured statements (sequences or scopes)
are added as empty constructions. And then, more syntac-
tic elements are added to them. However, in the top-down
composition the designer starts with a specification of the
business process in which only the interactions (the chore-
ography) with other web services are shown and then, the
business process logic is added. In this case, it happens that
existing activities should be surrounded by new complex
activities. For instance, invocations to the process being de-
fined may happen in parallel and therefore, they are sub-
sumed within a flow activity. Usually editors do not support
this kind of editing and force to create an empty complex
activity (i.e. an empty sequence) and then cut and paste.
This kind of editing results a very inconvenient and unpro-
ductive way of work in case several complex activities are
nested (e.g. a sequence within a flow that is contained by
a scope). For this reason, the ZenFlow composer supports
the insertion of complex activities surrounding blocks of ex-
isting activities. That is, it is possible to mark a group of
activities and then add a complex activity (i.e. a sequence,
flow . . . ) that will enclose them. The effect is that the newly
added complex activity will enclose that group of activities
preventing the painful and error prone cut and paste editing.

The composer enforces the consistency of the process
being edited, as far as possible. In this regard, some BPEL
activities can be used or not depending on the focus of edit-
ing. ZenFlow disables the BPEL activities from the palette
that do not fulfil the BPEL syntax at the current focus of

editing. For example, when the programmer starts a new
process, selects thenew processicon and the visual repre-
sentation for a BPEL process is shown in the design area. In
the BPEL toolbar, only the BPEL elements corresponding
to activities, fault handlersandcompensationsare enabled.
If the activity icon is selected, then all the activity icons
are shown. Hence, syntactic errors in the composition of
a BPEL processes are avoided because only the elements
that match the BPEL syntax are enabled. However, a BPEL
process should not be enforced to be entirely correct while
editing, since this can be inconvenient for the programmer.
Only global consistency of the process structure is enforced
as well as syntactic well-formedness. In this way, a web
service invocation can be inserted in the process without
providing all its details (e.g. parameters). As the process is
being created, the language constraints are controlled by the
composer to check that the process conforms to the BPEL
syntax. The error view pane is updated dynamically to show
the current inconsistencies found in the process.

The selection of multiple BPEL activities is allowed.
This multiple selection also enables to cut or copy a group
of BPEL activities in either the flow chart or the text tree.
Interestingly, the composer checks that the cut is consis-
tent. This consistency lies in the fact that complex activities
have to be selected completely. Similarly when pasting, the
composer checks that the cut is syntactically and semanti-
cally correct. That is, the paste functionality is disabled at
those editing foci at which the paste would be syntactically
incorrect. In addition, a clipboard window gives access to
previously cut or copied BPEL activities.

ZenFlow integrates a UDDI browser to access UDDI
registries. The visual UDDI browser may connect to any
standard UDDI repository through the standard web service
interface. The browser enables queries and the navigation
of the results of these queries. Once the programmer has
found the web service she was looking for, she can drag
and drop it from the visual UDDI browser in the business
process. As a result, the composer will ask which kind of
interaction the user wants to use for that web service (in-
voke or receive). Additionally, the BPEL process definition
is enriched accordingly to support the interaction with that
web service (e.g. its web service interface).

5. Related Work

Although web service technology has appeared very re-
cently, the area of visual composition of web services has
attracted a lot of attention and several tools have been devel-
oped. The industrial products BPWS4J [7] and BPEL Pro-
cess Manager suite [13] are both based on BPEL. BPWS4J
[7] provides a simple visual environment where processes
are shown as a tree structure. There is no graphical
workflow-like view of a process. The environment synchro-



nizes the tree and the BPEL code views. BPWS4J lacks of
other external helper tools for process composition like a
UDDI browser and a clean error management. The error
list shows all the errors of the currently open BPEL files
and errors have to be deleted manually from the list. No
redirection to the corresponding code is done. The BPEL
Process Manager suite [13] provides a visual composition
tool called BPEL Designer. The process design environ-
ment offers two views of a BPEL process. The first one is
similar to the graphical one of ZenFlow. The process de-
signer can drag BPEL visual elements from a toolbar to the
working area. However, none of the advanced visual Zen-
Flow facilities are available, like the ones for the scalability
of views. For instance, simplified views of processes are not
allowed and the designer cannot select and manipulate mul-
tiple activities. The second view shows the whole process
as a unique visual element and just allows the definition of
thepartner links. Error management is complex. Errors are
shown in the properties of each activity of the process. The
process designer must open the properties of an activity in
order to find an error.

The BioOpera Flow Language (BFL) [14] is a visual
composition language for web services. The visualization
is based on a dataflow language. A single visual BPEL el-
ement of ZenFlow can represent a few dataflow elements.
The Self-Serv environment [2] supports the composition of
web services. The business logic of a composite service is
represented as a state chart. The tool lacks any advanced vi-
sual composition facility. Triana [10] is a graphical web
service composition and execution toolkit. A composite
service is created by dragging the services and connect-
ing them. Triana supports loops and conditional constructs.
In contrast with ZenFlow, the Triana GUI is not based on
BPEL. However, a workflow created with this GUI can be
saved as a BPEL process. Websight [4] is another tool for
visualizing the execution of web services. The Business
Process Modelling Notation (BPMN) has been proposed
very recently [20]. BPMN is a specification to standardize a
graphical notation for process developers. It defines a busi-
ness process diagram, which is based on flowcharts for cre-
ating graphical models of business process operations. The
design of ZenFlow eases the incorporation of this graphical
notation as another view.

6. Conclusions

ZenFlow frees the process designer from dealing with
XML code. ZenFlow provides visual abstract views of it
that ease the task of design. The composer offers multi-
ple synchronized views of a process so, the designer can
choose the most convenient one to navigate and edit a given
process. The scalability of the visualization is supported
by several means among which it should be highlighted the
nested hierarchical visualization of activities and its selec-

tive level of detail. This mechanism provides the power
of logical fisheye views handled manually which enables
a high level of detail on the current focus of attention and
lower levels of detail of the surrounding context. The visual
composer of ZenFlow supports two styles of composition:
top-down and bottom-up. Powerful editing primitives are
provided to support both styles. The editor guarantees the
syntactic correctness of processes by enabling and disabling
the activities that can be inserted in the process and by en-
forcing consistent cut and paste.

References

[1] Apache.AXIS. http://ws.apache.org/axis.
[2] B. Benatallah, Q. Z. Sheng, and M. Dumas. The self-serv

environment for web services composition.IEEE Internet
Computing, 7(1):40–48, 2003.

[3] BPMI. Business Process Modelling Language for Web Ser-
vices (BPML) 1.0. 2001. http://www.bpmi.org/BPML.htm.

[4] W. de Pauw. Visualizing the execution of web services. In
Workshop on Testing, Analysis and Verification of Web Ser-
vices. Invited presentation, 2004.

[5] Eclipse.Eclipse Platform. http://www.eclipse.org.
[6] G. W. Furnas. Generalized fisheye views. InProc. Of ACM

CHI Conference, pages 16–23, 1986.
[7] IBM. BPWS4J. http://www.alphaworks.ibm.com/tech/bpws4j.
[8] IBM, Microsoft, and BEA. Business Process Execution

Language for Web Services.
http://www-106.ibm.com/developerworks/webservices/library/ws-
bpel/ .

[9] F. Leymann. Web Services Flow Language (WSFL) 1.0.
2001. http://www-3.ibm.com/software/solutions/ webser-
vices/pdf/WSFL.pdf.

[10] S. Majithia, M. S. Shields, I. J. Taylor, and I. Wang. Triana:
A graphical web service composition and execution toolkit.
In Int. Conf. on Web Services, pages 514–521, 2004.

[11] Microsoft. .NET Framework. http://www.microsoft.com/
net/.

[12] Microsoft. XLANG: Web Services for Business Process
Desing. 2001.

[13] Oracle. Oracle BPEL Process Manager. 2004.
http://www.oracle.com/technology/products/ias/bpel/index.html.

[14] C. Pautasso and G. Alonso. Visual composition of web ser-
vices. In IEEE Symp. on Human Centric Computing Lan-
guages and Environments, 2003.

[15] Sun.Java Web Services Developper Pack (Java WSDP).
http://java.sun.com/webservices/jwsdp/index.jsp.

[16] UDDI. Universal Description, Discovery and Integration of
Web Services. http://uddi.org/pubs/uddiv3.htm.

[17] W3C. Web Services Choreography Description Language.
http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/.

[18] W3C. Web Services Definition Language (WSDL). 2001.
http://www.w3.org/TR/wsdl.

[19] W3C. Simple Object Access Protocol (SOAP) 1.2. 2002.
http://www.w3.org/TR/soap12.

[20] S. White. Business Process Modelling Notation (BPMN).
2004. http://www.bpmi.org/BPMN.htm.

[21] P. Wohed, W. Aalst, M. Dumas, and A. Hofstede. Analy-
sis of Web Services Composition Languages: The Case of
BPEL4WS. In22nd Int. Conf. on Conceptual Modeling (ER
2003), 2003.


